

Machine Learning is making the computer learn from studying data and
statistics.

Machine Learning is a step into the direction of artificial intelligence
(AI).

Machine Learning is a program that analyses data and learns to predict
the outcome.

Where To Start?
In this tutorial we will go back to mathematics and study statistics, and
how to calculate important numbers based on data sets.

We will also learn how to use various Python modules to get the
answers we need.

And we will learn how to make functions that are able to predict the
outcome based on what we have learned.

Data Set
In the mind of a computer, a data set is any collection of data. It can
be anything from an array to a complete database.

Example of an array:

[99,86,87,88,111,86,103,87,94,78,77,85,86]

Example of a database:

Carname Color Age Speed AutoPass

BMW red 5 99 Y

Volvo black 7 86 Y

VW gray 8 87 N

VW white 7 88 Y

Ford white 2 111 Y

VW white 17 86 Y

Tesla red 2 103 Y

BMW black 9 87 Y

Volvo gray 4 94 N

Ford white 11 78 N

Toyota gray 12 77 N

VW white 9 85 N

Toyota blue 6 86 Y

By looking at the array, we can guess that the average value is
probably around 80 or 90, and we are also able to determine the
highest value and the lowest value, but what else can we do?

And by looking at the database we can see that the most popular color
is white, and the oldest car is 17 years, but what if we could predict if
a car had an AutoPass, just by looking at the other values?

That is what Machine Learning is for! Analyzing data and predicting the
outcome!

In Machine Learning it is common to work with very large data sets. In
this tutorial we will try to make it as easy as possible to understand
the different concepts of machine learning, and we will work with small
easy-to-understand data sets.

Data Types
To analyze data, it is important to know what type of data we are
dealing with.

We can split the data types into three main categories:

x Numerical
x Categorical
x Ordinal

Numerical data are numbers, and can be split into two numerical
categories:

x Discrete Data
- numbers that are limited to integers. Example: The number of
cars passing by.

x Continuous Data
- numbers that are of infinite value. Example: The price of an
item, or the size of an item

Categorical data are values that cannot be measured up against each
other. Example: a color value, or any yes/no values.

Ordinal data are like categorical data, but can be measured up against
each other. Example: school grades where A is better than B and so
on.

By knowing the data type of your data source, you will be able to know
what technique to use when analyzing them.

Mean, Median, and Mode
What can we learn from looking at a group of numbers?

In Machine Learning (and in mathematics) there are often three values
that interests us:

x Mean - The average value
x Median - The mid point value
x Mode - The most common value

Example: We have registered the speed of 13 cars:

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

What is the average, the middle, or the most common speed value?

Mean
The mean value is the average value.

To calculate the mean, find the sum of all values, and divide the sum
by the number of values:

(99+86+87+88+111+86+103+87+94+78+77+85+86) / 13 = 89.77

Example

Use the NumPy mean() method to find the average speed:

import numpy

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = numpy.mean(speed)

print(x)

Median
The median value is the value in the middle, after you have sorted all
the values:

77, 78, 85, 86, 86, 86, 87, 87, 88, 94, 99, 103, 111

It is important that the numbers are sorted before you can find the
median.

The NumPy module has a method for this:

Example

Use the NumPy median() method to find the middle value:

import numpy

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = numpy.median(speed)

print(x)

If there are two numbers in the middle, divide the sum of those
numbers by two.

77, 78, 85, 86, 86, 86, 87, 87, 94, 98, 99, 103

(86 + 87) / 2 = 86.5

Example

Using the NumPy module:

import numpy

speed = [99,86,87,88,86,103,87,94,78,77,85,86]

x = numpy.median(speed)

print(x)

Mode
The Mode value is the value that appears the most number of times:

99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86 = 86

Example

Use the SciPy mode() method to find the number that appears the most:

from scipy import stats

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86]

x = stats.mode(speed)

print(x)

Chapter Summary
The Mean, Median, and Mode are techniques that are often used in
Machine Learning, so it is important to understand the concept behind
them.

What is Standard Deviation?
Standard deviation is a number that describes how spread out the
values are.

A low standard deviation means that most of the numbers are close to
the mean (average) value.

A high standard deviation means that the values are spread out over a
wider range.

Example: This time we have registered the speed of 7 cars:

speed = [86,87,88,86,87,85,86]

The standard deviation is:

0.9

Meaning that most of the values are within the range of 0.9 from the
mean value, which is 86.4.

Let us do the same with a selection of numbers with a wider range:

speed = [32,111,138,28,59,77,97]

The standard deviation is:

37.85

Meaning that most of the values are within the range of 37.85 from the
mean value, which is 77.4.

As you can see, a higher standard deviation indicates that the values
are spread out over a wider range.

The NumPy module has a method to calculate the standard deviation:

Example

Use the NumPy std() method to find the standard deviation:

import numpy

speed = [86,87,88,86,87,85,86]

x = numpy.std(speed)

print(x)

Example
import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.std(speed)

print(x)

Variance
Variance is another number that indicates how spread out the values
are.

In fact, if you take the square root of the variance, you get the
standard deviation!

Or the other way around, if you multiply the standard deviation by
itself, you get the variance!

To calculate the variance you have to do as follows:

1. Find the mean:

(32+111+138+28+59+77+97) / 7 = 77.4

2. For each value: find the difference from the mean:

 32 - 77.4 = -45.4
111 - 77.4 = 33.6
138 - 77.4 = 60.6
 28 - 77.4 = -49.4
 59 - 77.4 = -18.4
 77 - 77.4 = - 0.4
 97 - 77.4 = 19.6

3. For each difference: find the square value:

(-45.4)2 = 2061.16
 (33.6)2 = 1128.96
 (60.6)2 = 3672.36
(-49.4)2 = 2440.36
(-18.4)2 = 338.56
(- 0.4)2 = 0.16
 (19.6)2 = 384.16

4. The variance is the average number of these squared differences:

(2061.16+1128.96+3672.36+2440.36+338.56+0.16+384.16) / 7 = 1
432.2

Luckily, NumPy has a method to calculate the variance:

Example

Use the NumPy var() method to find the variance:

import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.var(speed)

print(x)

Standard Deviation
As we have learned, the formula to find the standard deviation is the
square root of the variance:

√1432.25 = 37.85

Or, as in the example from before, use the NumPy to calculate the
standard deviation:

Example

Use the NumPy std() method to find the standard deviation:

import numpy

speed = [32,111,138,28,59,77,97]

x = numpy.std(speed)

print(x)

Symbols

Standard Deviation is often represented by the symbol Sigma: σ

Variance is often represented by the symbol Sigma Square: σ2

Chapter Summary
The Standard Deviation and Variance are terms that are often used in
Machine Learning, so it is important to understand how to get them,
and the concept behind them.

What are Percentiles?
Percentiles are used in statistics to give you a number that describes
the value that a given percent of the values are lower than.

Example: Let's say we have an array of the ages of all the people that
lives in a street.

ages =
[5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31]

What is the 75. percentile? The answer is 43, meaning that 75% of the
people are 43 or younger.

The NumPy module has a method for finding the specified percentile:

Example

Use the NumPy percentile() method to find the percentiles:

import numpy

ages
= [5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31]

x = numpy.percentile(ages, 75)

print(x)

Example

What is the age that 90% of the people are younger than?

import numpy

ages
= [5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31]

x = numpy.percentile(ages, 90)

print(x)

Data Distribution
Earlier in this tutorial we have worked with very small amounts of data
in our examples, just to understand the different concepts.

In the real world, the data sets are much bigger, but it can be difficult
to gather real world data, at least at an early stage of a project.

How Can we Get Big Data Sets?

To create big data sets for testing, we use the Python module NumPy,
which comes with a number of methods to create random data sets, of
any size.

Example

Create an array containing 250 random floats between 0 and 5:

import numpy

x = numpy.random.uniform(0.0, 5.0, 250)

print(x)

Histogram
To visualize the data set we can draw a histogram with the data we
collected.

We will use the Python module Matplotlib to draw a histogram.

Example

Draw a histogram:

import numpy
import matplotlib.pyplot as plt

x = numpy.random.uniform(0.0, 5.0, 250)

plt.hist(x, 5)
plt.show()

Result:

Histogram Explained

We use the array from the example above to draw a histogram with 5
bars.

The first bar represents how many values in the array are between 0
and 1.

The second bar represents how many values are between 1 and 2.

Etc.

Which gives us this result:

x 52 values are between 0 and 1
x 48 values are between 1 and 2
x 49 values are between 2 and 3
x 51 values are between 3 and 4
x 50 values are between 4 and 5

Note: The array values are random numbers and will not show the
exact same result on your computer.

Big Data Distributions
An array containing 250 values is not considered very big, but now you
know how to create a random set of values, and by changing the
parameters, you can create the data set as big as you want.

Example

Create an array with 100000 random numbers, and display them using
a histogram with 100 bars:

import numpy
import matplotlib.pyplot as plt

x = numpy.random.uniform(0.0, 5.0, 100000)

plt.hist(x, 100)
plt.show()

Normal Data Distribution
In the previous chapter we learned how to create a completely random
array, of a given size, and between two given values.

In this chapter we will learn how to create an array where the values
are concentrated around a given value.

In probability theory this kind of data distribution is known as
the normal data distribution, or the Gaussian data distribution, after
the mathematician Carl Friedrich Gauss who came up with the formula
of this data distribution.

Example

A typical normal data distribution:

import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 100000)

plt.hist(x, 100)
plt.show()

Result:

Note: A normal distribution graph is also known as the bell
curve because of it's characteristic shape of a bell.

Histogram Explained

We use the array from the numpy.random.normal() method, with 100000
values, to draw a histogram with 100 bars.

We specify that the mean value is 5.0, and the standard deviation is
1.0.

Meaning that the values should be concentrated around 5.0, and rarely
further away than 1.0 from the mean.

And as you can see from the histogram, most values are between 4.0
and 6.0, with a top at approximately 5.0.

Scatter Plot
A scatter plot is a diagram where each value in the data set is
represented by a dot.

The Matplotlib module has a method for drawing scatter plots, it needs
two arrays of the same length, one for the values of the x-axis, and
one for the values of the y-axis:

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]

y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

The x array represents the age of each car.

The y array represents the speed of each car.

Example

Use the scatter() method to draw a scatter plot diagram:

import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)
plt.show()

Result:

Scatter Plot Explained

The x-axis represents ages, and the y-axis represents speeds.

What we can read from the diagram is that the two fastest cars were
both 2 years old, and the slowest car was 12 years old.

Note: It seems that the newer the car, the faster it drives, but that
could be a coincidence, after all we only registered 13 cars.

Random Data Distributions
In Machine Learning the data sets can contain thousands-, or even
millions, of values.

You might not have real world data when you are testing an algorithm,
you might have to use randomly generated values.

As we have learned in the previous chapter, the NumPy module can
help us with that!

Let us create two arrays that are both filled with 1000 random
numbers from a normal data distribution.

The first array will have the mean set to 5.0 with a standard deviation
of 1.0.

The second array will have the mean set to 10.0 with a standard
deviation of 2.0:

Example

A scatter plot with 1000 dots:

import numpy
import matplotlib.pyplot as plt

x = numpy.random.normal(5.0, 1.0, 1000)
y = numpy.random.normal(10.0, 2.0, 1000)

plt.scatter(x, y)
plt.show()

Result:

Scatter Plot Explained

We can see that the dots are concentrated around the value 5 on the
x-axis, and 10 on the y-axis.

We can also see that the spread is wider on the y-axis than on the x-
axis.

Regression
The term regression is used when you try to find the relationship
between variables.

In Machine Learning, and in statistical modeling, that relationship is
used to predict the outcome of future events.

Linear Regression
Linear regression uses the relationship between the data-points to
draw a straight line through all them.

This line can be used to predict future values.

In Machine Learning, predicting the future is very important.

How Does it Work?
Python has methods for finding a relationship between data-points and
to draw a line of linear regression. We will show you how to use these
methods instead of going through the mathematic formula.

In the example below, the x-axis represents age, and the y-axis
represents speed. We have registered the age and speed of 13 cars as
they were passing a tollbooth. Let us see if the data we collected could
be used in a linear regression:

Example

Start by drawing a scatter plot:

import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)
plt.show()

Result:

Example

Import scipy and draw the line of Linear Regression:

import matplotlib.pyplot as plt
from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):
 return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()

Result:

Example Explained

Import the modules you need.

You can learn about the Matplotlib module in our Matplotlib Tutorial.

You can learn about the SciPy module in our SciPy Tutorial.

import matplotlib.pyplot as plt
from scipy import stats

Create the arrays that represent the values of the x and y axis:

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

Execute a method that returns some important key values of Linear
Regression:

slope, intercept, r, p, std_err = stats.linregress(x, y)

Create a function that uses the slope and intercept values to return a
new value. This new value represents where on the y-axis the
corresponding x value will be placed:

def myfunc(x):
 return slope * x + intercept

Run each value of the x array through the function. This will result in a
new array with new values for the y-axis:

mymodel = list(map(myfunc, x))

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of linear regression:

plt.plot(x, mymodel)

Display the diagram:

plt.show()

R for Relationship
It is important to know how the relationship between the values of the
x-axis and the values of the y-axis is, if there are no relationship the
linear regression can not be used to predict anything.

This relationship - the coefficient of correlation - is called r.

The r value ranges from -1 to 1, where 0 means no relationship, and 1
(and -1) means 100% related.

Python and the Scipy module will compute this value for you, all you
have to do is feed it with the x and y values.

Example

How well does my data fit in a linear regression?

from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

slope, intercept, r, p, std_err = stats.linregress(x, y)

print(r)

Note: The result -0.76 shows that there is a relationship, not perfect,
but it indicates that we could use linear regression in future
predictions.

Predict Future Values
Now we can use the information we have gathered to predict future
values.

Example: Let us try to predict the speed of a 10 years old car.

To do so, we need the same myfunc() function from the example above:

def myfunc(x):
 return slope * x + intercept

Example

Predict the speed of a 10 years old car:

from scipy import stats

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):
 return slope * x + intercept

speed = myfunc(10)

print(speed)

The example predicted a speed at 85.6, which we also could read from
the diagram:

Bad Fit?
Let us create an example where linear regression would not be the
best method to predict future values.

Example

These values for the x- and y-axis should result in a very bad fit for
linear regression:

import matplotlib.pyplot as plt
from scipy import stats

x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

slope, intercept, r, p, std_err = stats.linregress(x, y)

def myfunc(x):
 return slope * x + intercept

mymodel = list(map(myfunc, x))

plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()

Result:

And the r for relationship?

Example

You should get a very low r value.

import numpy
from scipy import stats

x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

slope, intercept, r, p, std_err = stats.linregress(x, y)

print(r)

The result: 0.013 indicates a very bad relationship, and tells us that
this data set is not suitable for linear regression.

Polynomial Regression
If your data points clearly will not fit a linear regression (a straight line
through all data points), it might be ideal for polynomial regression.

Polynomial regression, like linear regression, uses the relationship
between the variables x and y to find the best way to draw a line
through the data points.

How Does it Work?
Python has methods for finding a relationship between data-points and
to draw a line of polynomial regression. We will show you how to use
these methods instead of going through the mathematic formula.

In the example below, we have registered 18 cars as they were
passing a certain tollbooth.

We have registered the car's speed, and the time of day (hour) the
passing occurred.

The x-axis represents the hours of the day and the y-axis represents
the speed:

Example

Start by drawing a scatter plot:

import matplotlib.pyplot as plt

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

plt.scatter(x, y)
plt.show()

Result:

Example

Import numpy and matplotlib then draw the line of Polynomial
Regression:

import numpy
import matplotlib.pyplot as plt

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

myline = numpy.linspace(1, 22, 100)

plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()

Result:

Example Explained

Import the modules you need.

You can learn about the NumPy module in our NumPy Tutorial.

You can learn about the SciPy module in our SciPy Tutorial.

import numpy
import matplotlib.pyplot as plt

Create the arrays that represent the values of the x and y axis:

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y
= [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

NumPy has a method that lets us make a polynomial model:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

Then specify how the line will display, we start at position 1, and end
at position 22:

myline = numpy.linspace(1, 22, 100)

Draw the original scatter plot:

plt.scatter(x, y)

Draw the line of polynomial regression:

plt.plot(myline, mymodel(myline))

Display the diagram:

plt.show()

R-Squared
It is important to know how well the relationship between the values of
the x- and y-axis is, if there are no relationship the polynomial
regression can not be used to predict anything.

The relationship is measured with a value called the r-squared.

The r-squared value ranges from 0 to 1, where 0 means no
relationship, and 1 means 100% related.

Python and the Sklearn module will compute this value for you, all you
have to do is feed it with the x and y arrays:

Example

How well does my data fit in a polynomial regression?

import numpy
from sklearn.metrics import r2_score

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

print(r2_score(y, mymodel(x)))

Note: The result 0.94 shows that there is a very good relationship,
and we can use polynomial regression in future predictions.

Predict Future Values
Now we can use the information we have gathered to predict future
values.

Example: Let us try to predict the speed of a car that passes the
tollbooth at around 17 P.M:

To do so, we need the same mymodel array from the example above:

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

Example

Predict the speed of a car passing at 17 P.M:

import numpy
from sklearn.metrics import r2_score

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22]
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

speed = mymodel(17)
print(speed)

The example predicted a speed to be 88.87, which we also could read
from the diagram:

Bad Fit?
Let us create an example where polynomial regression would not be
the best method to predict future values.

Example

These values for the x- and y-axis should result in a very bad fit for
polynomial regression:

import numpy
import matplotlib.pyplot as plt

x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

myline = numpy.linspace(2, 95, 100)

plt.scatter(x, y)
plt.plot(myline, mymodel(myline))
plt.show()

Result:

And the r-squared value?

Example

You should get a very low r-squared value.

import numpy
from sklearn.metrics import r2_score

x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40]
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15]

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3))

print(r2_score(y, mymodel(x)))

The result: 0.00995 indicates a very bad relationship, and tells us that
this data set is not suitable for polynomial regression.

Multiple Regression
Multiple regression is like linear regression, but with more than one
independent value, meaning that we try to predict a value based
on two or more variables.

Take a look at the data set below, it contains some information about
cars.

Car Model Volume Weight CO2

Toyota Aygo 1000 790 99

Mitsubishi Space Star 1200 1160 95

Skoda Citigo 1000 929 95

Fiat 500 900 865 90

Mini Cooper 1500 1140 105

VW Up! 1000 929 105

Skoda Fabia 1400 1109 90

Mercedes A-Class 1500 1365 92

Ford Fiesta 1500 1112 98

Audi A1 1600 1150 99

Hyundai I20 1100 980 99

Suzuki Swift 1300 990 101

Ford Fiesta 1000 1112 99

Honda Civic 1600 1252 94

Hundai I30 1600 1326 97

Opel Astra 1600 1330 97

BMW 1 1600 1365 99

Mazda 3 2200 1280 104

Skoda Rapid 1600 1119 104

Ford Focus 2000 1328 105

Ford Mondeo 1600 1584 94

Opel Insignia 2000 1428 99

Mercedes C-Class 2100 1365 99

Skoda Octavia 1600 1415 99

Volvo S60 2000 1415 99

Mercedes CLA 1500 1465 102

Audi A4 2000 1490 104

Audi A6 2000 1725 114

Volvo V70 1600 1523 109

BMW 5 2000 1705 114

Mercedes E-Class 2100 1605 115

Volvo XC70 2000 1746 117

Ford B-Max 1600 1235 104

BMW 2 1600 1390 108

Opel Zafira 1600 1405 109

Mercedes SLK 2500 1395 120

We can predict the CO2 emission of a car based on the size of the
engine, but with multiple regression we can throw in more variables,
like the weight of the car, to make the prediction more accurate.

How Does it Work?
In Python we have modules that will do the work for us. Start by
importing the Pandas module.

import pandas

Learn about the Pandas module in our Pandas Tutorial.

The Pandas module allows us to read csv files and return a DataFrame
object.

The file is meant for testing purposes only, you can download it
here: cars.csv

df = pandas.read_csv("cars.csv")

Then make a list of the independent values and call this variable X.

Put the dependent values in a variable called y.

X = df[['Weight', 'Volume']]
y = df['CO2']

Tip: It is common to name the list of independent values with a upper
case X, and the list of dependent values with a lower case y.

We will use some methods from the sklearn module, so we will have to
import that module as well:

from sklearn import linear_model

From the sklearn module we will use the LinearRegression() method to
create a linear regression object.

This object has a method called fit() that takes the independent and
dependent values as parameters and fills the regression object with
data that describes the relationship:

regr = linear_model.LinearRegression()
regr.fit(X, y)

Now we have a regression object that are ready to predict CO2 values
based on a car's weight and volume:

#predict the CO2 emission of a car where the weight is
2300kg, and the volume is 1300cm3:
predictedCO2 = regr.predict([[2300, 1300]])

Example

See the whole example in action:

import pandas
from sklearn import linear_model

df = pandas.read_csv("cars.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

regr = linear_model.LinearRegression()
regr.fit(X, y)

#predict the CO2 emission of a car where the weight is 2300kg,
and the volume is 1300cm3:
predictedCO2 = regr.predict([[2300, 1300]])

print(predictedCO2)

Result:
[107.2087328]

We have predicted that a car with 1.3 liter engine, and a weight of
2300 kg, will release approximately 107 grams of CO2 for every
kilometer it drives.

Coefficient
The coefficient is a factor that describes the relationship with an
unknown variable.

Example: if x is a variable, then 2x is x two times. x is the unknown
variable, and the number 2 is the coefficient.

In this case, we can ask for the coefficient value of weight against
CO2, and for volume against CO2. The answer(s) we get tells us what
would happen if we increase, or decrease, one of the independent
values.

Example

Print the coefficient values of the regression object:

import pandas
from sklearn import linear_model

df = pandas.read_csv("cars.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

regr = linear_model.LinearRegression()
regr.fit(X, y)

print(regr.coef_)

Result:
[0.00755095 0.00780526]

Result Explained
The result array represents the coefficient values of weight and
volume.

Weight: 0.00755095
Volume: 0.00780526

These values tell us that if the weight increase by 1kg, the CO2
emission increases by 0.00755095g.

And if the engine size (Volume) increases by 1 cm3, the CO2 emission
increases by 0.00780526 g.

I think that is a fair guess, but let test it!

We have already predicted that if a car with a 1300cm3 engine weighs
2300kg, the CO2 emission will be approximately 107g.

What if we increase the weight with 1000kg?

Example

Copy the example from before, but change the weight from 2300 to
3300:

import pandas
from sklearn import linear_model

df = pandas.read_csv("cars.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

regr = linear_model.LinearRegression()
regr.fit(X, y)

predictedCO2 = regr.predict([[3300, 1300]])

print(predictedCO2)

Result:
[114.75968007]

We have predicted that a car with 1.3 liter engine, and a weight of
3300 kg, will release approximately 115 grams of CO2 for every
kilometer it drives.

Which shows that the coefficient of 0.00755095 is correct:

107.2087328 + (1000 * 0.00755095) = 114.75968

Scale Features
When your data has different values, and even different measurement
units, it can be difficult to compare them. What is kilograms compared
to meters? Or altitude compared to time?

The answer to this problem is scaling. We can scale data into new
values that are easier to compare.

Take a look at the table below, it is the same data set that we used in
the multiple regression chapter, but this time the volume column
contains values in liters instead of cm3 (1.0 instead of 1000).

Car Model Volume Weight CO2

Toyota Aygo 1.0 790 99

Mitsubishi Space Star 1.2 1160 95

Skoda Citigo 1.0 929 95

Fiat 500 0.9 865 90

Mini Cooper 1.5 1140 105

VW Up! 1.0 929 105

Skoda Fabia 1.4 1109 90

Mercedes A-Class 1.5 1365 92

Ford Fiesta 1.5 1112 98

Audi A1 1.6 1150 99

Hyundai I20 1.1 980 99

Suzuki Swift 1.3 990 101

Ford Fiesta 1.0 1112 99

Honda Civic 1.6 1252 94

Hundai I30 1.6 1326 97

Opel Astra 1.6 1330 97

BMW 1 1.6 1365 99

Mazda 3 2.2 1280 104

Skoda Rapid 1.6 1119 104

Ford Focus 2.0 1328 105

Ford Mondeo 1.6 1584 94

Opel Insignia 2.0 1428 99

Mercedes C-Class 2.1 1365 99

Skoda Octavia 1.6 1415 99

Volvo S60 2.0 1415 99

Mercedes CLA 1.5 1465 102

Audi A4 2.0 1490 104

Audi A6 2.0 1725 114

Volvo V70 1.6 1523 109

BMW 5 2.0 1705 114

Mercedes E-Class 2.1 1605 115

Volvo XC70 2.0 1746 117

Ford B-Max 1.6 1235 104

BMW 2 1.6 1390 108

Opel Zafira 1.6 1405 109

Mercedes SLK 2.5 1395 120

It can be difficult to compare the volume 1.0 with the weight 790, but
if we scale them both into comparable values, we can easily see how
much one value is compared to the other.

There are different methods for scaling data, in this tutorial we will use
a method called standardization.

The standardization method uses this formula:

z = (x - u) / s

Where z is the new value, x is the original value, u is the mean and s is
the standard deviation.

If you take the weight column from the data set above, the first value
is 790, and the scaled value will be:

(790 - 1292.23) / 238.74 = -2.1

If you take the volume column from the data set above, the first value
is 1.0, and the scaled value will be:

(1.0 - 1.61) / 0.38 = -1.59

Now you can compare -2.1 with -1.59 instead of comparing 790 with
1.0.

You do not have to do this manually, the Python sklearn module has a
method called StandardScaler() which returns a Scaler object with
methods for transforming data sets.

Example

Scale all values in the Weight and Volume columns:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("cars2.csv")

X = df[['Weight', 'Volume']]

scaledX = scale.fit_transform(X)

print(scaledX)

Result:

Note that the first two values are -2.1 and -1.59, which corresponds to
our calculations:

[[-2.10389253 -1.59336644]
 [-0.55407235 -1.07190106]
 [-1.52166278 -1.59336644]
 [-1.78973979 -1.85409913]
 [-0.63784641 -0.28970299]
 [-1.52166278 -1.59336644]
 [-0.76769621 -0.55043568]
 [0.3046118 -0.28970299]
 [-0.7551301 -0.28970299]
 [-0.59595938 -0.0289703]
 [-1.30803892 -1.33263375]
 [-1.26615189 -0.81116837]
 [-0.7551301 -1.59336644]
 [-0.16871166 -0.0289703]
 [0.14125238 -0.0289703]
 [0.15800719 -0.0289703]
 [0.3046118 -0.0289703]
 [-0.05142797 1.53542584]
 [-0.72580918 -0.0289703]
 [0.14962979 1.01396046]
 [1.2219378 -0.0289703]
 [0.5685001 1.01396046]
 [0.3046118 1.27469315]
 [0.51404696 -0.0289703]
 [0.51404696 1.01396046]
 [0.72348212 -0.28970299]
 [0.8281997 1.01396046]
 [1.81254495 1.01396046]
 [0.96642691 -0.0289703]
 [1.72877089 1.01396046]
 [1.30990057 1.27469315]
 [1.90050772 1.01396046]
 [-0.23991961 -0.0289703]
 [0.40932938 -0.0289703]
 [0.47215993 -0.0289703]
 [0.4302729 2.31762392]]

Predict CO2 Values
The task in the Multiple Regression chapter was to predict the CO2
emission from a car when you only knew its weight and volume.

When the data set is scaled, you will have to use the scale when you
predict values:

Example

Predict the CO2 emission from a 1.3 liter car that weighs 2300
kilograms:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("cars2.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

scaledX = scale.fit_transform(X)

regr = linear_model.LinearRegression()
regr.fit(scaledX, y)

scaled = scale.transform([[2300, 1.3]])

predictedCO2 = regr.predict([scaled[0]])
print(predictedCO2)

Result:
[107.2087328]

Evaluate Your Model
In Machine Learning we create models to predict the outcome of
certain events, like in the previous chapter where we predicted the
CO2 emission of a car when we knew the weight and engine size.

To measure if the model is good enough, we can use a method called
Train/Test.

What is Train/Test
Train/Test is a method to measure the accuracy of your model.

It is called Train/Test because you split the the data set into two sets:
a training set and a testing set.

80% for training, and 20% for testing.

You train the model using the training set.

You test the model using the testing set.

Train the model means create the model.

Test the model means test the accuracy of the model.

Start With a Data Set
Start with a data set you want to test.

Our data set illustrates 100 customers in a shop, and their shopping
habits.

Example
import numpy
import matplotlib.pyplot as plt
numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)
y = numpy.random.normal(150, 40, 100) / x

plt.scatter(x, y)
plt.show()

Result:

The x axis represents the number of minutes before making a
purchase.

The y axis represents the amount of money spent on the purchase.

Split Into Train/Test
The training set should be a random selection of 80% of the original
data.

The testing set should be the remaining 20%.

train_x = x[:80]
train_y = y[:80]

test_x = x[80:]
test_y = y[80:]

Display the Training Set
Display the same scatter plot with the training set:

Example
plt.scatter(train_x, train_y)
plt.show()

Result:

It looks like the original data set, so it seems to be a fair selection:

Display the Testing Set
To make sure the testing set is not completely different, we will take a
look at the testing set as well.

Example
plt.scatter(test_x, test_y)
plt.show()

Result:

The testing set also looks like the original data set:

Fit the Data Set
What does the data set look like? In my opinion I think the best fit
would be a polynomial regression, so let us draw a line of polynomial
regression.

To draw a line through the data points, we use the plot() method of
the matplotlib module:

Example

Draw a polynomial regression line through the data points:

import numpy
import matplotlib.pyplot as plt
numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)
y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]
train_y = y[:80]

test_x = x[80:]
test_y = y[80:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4))

myline = numpy.linspace(0, 6, 100)

plt.scatter(train_x, train_y)
plt.plot(myline, mymodel(myline))
plt.show()

Result:

The result can back my suggestion of the data set fitting a polynomial
regression, even though it would give us some weird results if we try
to predict values outside of the data set. Example: the line indicates
that a customer spending 6 minutes in the shop would make a
purchase worth 200. That is probably a sign of overfitting.

But what about the R-squared score? The R-squared score is a good
indicator of how well my data set is fitting the model.

R2
Remember R2, also known as R-squared?

It measures the relationship between the x axis and the y axis, and the
value ranges from 0 to 1, where 0 means no relationship, and 1 means
totally related.

The sklearn module has a method called r2_score() that will help us find
this relationship.

In this case we would like to measure the relationship between the
minutes a customer stays in the shop and how much money they
spend.

Example

How well does my training data fit in a polynomial regression?

import numpy
from sklearn.metrics import r2_score
numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)
y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]
train_y = y[:80]

test_x = x[80:]
test_y = y[80:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4))

r2 = r2_score(train_y, mymodel(train_x))

print(r2)

Note: The result 0.799 shows that there is a OK relationship.

Bring in the Testing Set
Now we have made a model that is OK, at least when it comes to
training data.

Now we want to test the model with the testing data as well, to see if
gives us the same result.

Example

Let us find the R2 score when using testing data:

import numpy
from sklearn.metrics import r2_score
numpy.random.seed(2)

x = numpy.random.normal(3, 1, 100)
y = numpy.random.normal(150, 40, 100) / x

train_x = x[:80]
train_y = y[:80]

test_x = x[80:]
test_y = y[80:]

mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4))

r2 = r2_score(test_y, mymodel(test_x))

print(r2)

Note: The result 0.809 shows that the model fits the testing set as
well, and we are confident that we can use the model to predict future
values.

Predict Values
Now that we have established that our model is OK, we can start
predicting new values.

Example

How much money will a buying customer spend, if she or he stays in
the shop for 5 minutes?

print(mymodel(5))

The example predicted the customer to spend 22.88 dollars, as seems
to correspond to the diagram:

Decision Tree
In this chapter we will show you how to make a "Decision Tree". A
Decision Tree is a Flow Chart, and can help you make decisions based
on previous experience.

In the example, a person will try to decide if he/she should go to a
comedy show or not.

Luckily our example person has registered every time there was a
comedy show in town, and registered some information about the
comedian, and also registered if he/she went or not.

Now, based on this data set, Python can create a decision tree that can
be used to decide if any new shows are worth attending to.

Age Experience Rank Nationality Go

36 10 9 UK NO

42 12 4 USA NO

23 4 6 N NO

52 4 4 USA NO

43 21 8 USA YES

44 14 5 UK NO

66 3 7 N YES

35 14 9 UK YES

52 13 7 N YES

35 5 9 N YES

24 3 5 USA NO

18 3 7 UK YES

45 9 9 UK YES

How Does it Work?
First, import the modules you need, and read the dataset with pandas:

Example

Read and print the data set:

import pandas
from sklearn import tree
import pydotplus
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import matplotlib.image as pltimg

df = pandas.read_csv("shows.csv")

print(df)

To make a decision tree, all data has to be numerical.

We have to convert the non numerical columns 'Nationality' and 'Go'
into numerical values.

Pandas has a map() method that takes a dictionary with information on
how to convert the values.

{'UK': 0, 'USA': 1, 'N': 2}

Means convert the values 'UK' to 0, 'USA' to 1, and 'N' to 2.

Example

Change string values into numerical values:

d = {'UK': 0, 'USA': 1, 'N': 2}
df['Nationality'] = df['Nationality'].map(d)
d = {'YES': 1, 'NO': 0}
df['Go'] = df['Go'].map(d)

print(df)

Then we have to separate the feature columns from the target column.

The feature columns are the columns that we try to predict from, and
the target column is the column with the values we try to predict.

Example

X is the feature columns, y is the target column:

features = ['Age', 'Experience', 'Rank', 'Nationality']

X = df[features]
y = df['Go']

print(X)
print(y)

Now we can create the actual decision tree, fit it with our details, and
save a .png file on the computer:

Example

Create a Decision Tree, save it as an image, and show the image:

dtree = DecisionTreeClassifier()
dtree = dtree.fit(X, y)
data = tree.export_graphviz(dtree, out_file=None,
feature_names=features)
graph = pydotplus.graph_from_dot_data(data)
graph.write_png('mydecisiontree.png')

img=pltimg.imread('mydecisiontree.png')
imgplot = plt.imshow(img)
plt.show()

Result Explained
The decision tree uses your earlier decisions to calculate the odds for
you to wanting to go see a comedian or not.

Let us read the different aspects of the decision tree:

Rank

Rank <= 6.5 means that every comedian with a rank of 6.5 or lower will
follow the True arrow (to the left), and the rest will follow
the False arrow (to the right).

gini = 0.497 refers to the quality of the split, and is always a number
between 0.0 and 0.5, where 0.0 would mean all of the samples got the
same result, and 0.5 would mean that the split is done exactly in the
middle.

samples = 13 means that there are 13 comedians left at this point in the
decision, which is all of them since this is the first step.

value = [6, 7] means that of these 13 comedians, 6 will get a "NO", and
7 will get a "GO".

Gini

There are many ways to split the samples, we use the GINI method in
this tutorial.

The Gini method uses this formula:

Gini = 1 - (x/n)2 - (y/n)2

Where x is the number of positive answers("GO"), n is the number of
samples, and y is the number of negative answers ("NO"), which gives
us this calculation:

1 - (7 / 13)2 - (6 / 13)2 = 0.497

The next step contains two boxes, one box for the comedians with a
'Rank' of 6.5 or lower, and one box with the rest.

True - 5 Comedians End Here:

gini = 0.0 means all of the samples got the same result.

samples = 5 means that there are 5 comedians left in this branch (5
comedian with a Rank of 6.5 or lower).

value = [5, 0] means that 5 will get a "NO" and 0 will get a "GO".

False - 8 Comedians Continue:

Nationality

Nationality <= 0.5 means that the comedians with a nationality value of
less than 0.5 will follow the arrow to the left (which means everyone
from the UK,), and the rest will follow the arrow to the right.

gini = 0.219 means that about 22% of the samples would go in one
direction.

samples = 8 means that there are 8 comedians left in this branch (8
comedian with a Rank higher than 6.5).

value = [1, 7] means that of these 8 comedians, 1 will get a "NO" and 7
will get a "GO".

True - 4 Comedians Continue:

Age

Age <= 35.5 means that comedians at the age of 35.5 or younger will
follow the arrow to the left, and the rest will follow the arrow to the
right.

gini = 0.375 means that about 37,5% of the samples would go in one
direction.

samples = 4 means that there are 4 comedians left in this branch (4
comedians from the UK).

value = [1, 3] means that of these 4 comedians, 1 will get a "NO" and 3
will get a "GO".

False - 4 Comedians End Here:

gini = 0.0 means all of the samples got the same result.

samples = 4 means that there are 4 comedians left in this branch (4
comedians not from the UK).

value = [0, 4] means that of these 4 comedians, 0 will get a "NO" and 4
will get a "GO".

True - 2 Comedians End Here:

gini = 0.0 means all of the samples got the same result.

samples = 2 means that there are 2 comedians left in this branch (2
comedians at the age 35.5 or younger).

value = [0, 2] means that of these 2 comedians, 0 will get a "NO" and 2
will get a "GO".

False - 2 Comedians Continue:

Experience

Experience <= 9.5 means that comedians with 9.5 years of experience,
or less, will follow the arrow to the left, and the rest will follow the
arrow to the right.

gini = 0.5 means that 50% of the samples would go in one direction.

samples = 2 means that there are 2 comedians left in this branch (2
comedians older than 35.5).

value = [1, 1] means that of these 2 comedians, 1 will get a "NO" and 1
will get a "GO".

True - 1 Comedian Ends Here:

gini = 0.0 means all of the samples got the same result.

samples = 1 means that there is 1 comedian left in this branch (1
comedian with 9.5 years of experience or less).

value = [0, 1] means that 0 will get a "NO" and 1 will get a "GO".

False - 1 Comedian Ends Here:

gini = 0.0 means all of the samples got the same result.

samples = 1 means that there is 1 comedians left in this branch (1
comedian with more than 9.5 years of experience).

value = [1, 0] means that 1 will get a "NO" and 0 will get a "GO".

Predict Values
We can use the Decision Tree to predict new values.

Example: Should I go see a show starring a 40 years old American
comedian, with 10 years of experience, and a comedy ranking of 7?

Example

Use predict() method to predict new values:

print(dtree.predict([[40, 10, 7, 1]]))

Example

What would the answer be if the comedy rank was 6?

print(dtree.predict([[40, 10, 6, 1]]))

Different Results

You will see that the Decision Tree gives you different results if you run
it enough times, even if you feed it with the same data.

That is because the Decision Tree does not give us a 100% certain
answer. It is based on the probability of an outcome, and the answer
will vary.

souhail.developer@gmail.comEmail :

SOUHAIL DEVELOPER

