


 

 

 

Machine Learning is making the computer learn from studying data and 
statistics. 

Machine Learning is a step into the direction of artificial intelligence 
(AI). 

Machine Learning is a program that analyses data and learns to predict 
the outcome. 

Where To Start? 
In this tutorial we will go back to mathematics and study statistics, and 
how to calculate important numbers based on data sets. 

We will also learn how to use various Python modules to get the 
answers we need. 

And we will learn how to make functions that are able to predict the 
outcome based on what we have learned. 

 

Data Set 
In the mind of a computer, a data set is any collection of data. It can 
be anything from an array to a complete database. 

Example of an array: 

[99,86,87,88,111,86,103,87,94,78,77,85,86] 

 

 

 

 

 

 

 

 

 

 

 



 

Example of a database: 

Carname Color Age Speed AutoPass 

BMW red 5 99 Y 

Volvo black 7 86 Y 

VW gray 8 87 N 

VW white 7 88 Y 

Ford white 2 111 Y 

VW white 17 86 Y 

Tesla red 2 103 Y 

BMW black 9 87 Y 

Volvo gray 4 94 N 

Ford white 11 78 N 

Toyota gray 12 77 N 

VW white 9 85 N 



Toyota blue 6 86 Y 

 

By looking at the array, we can guess that the average value is 
probably around 80 or 90, and we are also able to determine the 
highest value and the lowest value, but what else can we do? 

And by looking at the database we can see that the most popular color 
is white, and the oldest car is 17 years, but what if we could predict if 
a car had an AutoPass, just by looking at the other values? 

That is what Machine Learning is for! Analyzing data and predicting the 
outcome! 

In Machine Learning it is common to work with very large data sets. In 
this tutorial we will try to make it as easy as possible to understand 
the different concepts of machine learning, and we will work with small 
easy-to-understand data sets. 

 

Data Types 
To analyze data, it is important to know what type of data we are 
dealing with. 

We can split the data types into three main categories: 

x Numerical 
x Categorical 
x Ordinal 

Numerical data are numbers, and can be split into two numerical 
categories: 

x Discrete Data 
- numbers that are limited to integers. Example: The number of 
cars passing by. 

x Continuous Data 
- numbers that are of infinite value. Example: The price of an 
item, or the size of an item 

Categorical data are values that cannot be measured up against each 
other. Example: a color value, or any yes/no values. 

Ordinal data are like categorical data, but can be measured up against 
each other. Example: school grades where A is better than B and so 
on. 

By knowing the data type of your data source, you will be able to know 
what technique to use when analyzing them. 

 



 

 

Mean, Median, and Mode 
What can we learn from looking at a group of numbers? 

In Machine Learning (and in mathematics) there are often three values 
that interests us: 

x Mean - The average value 
x Median - The mid point value 
x Mode - The most common value 

Example: We have registered the speed of 13 cars: 

speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

What is the average, the middle, or the most common speed value? 

 

Mean 
The mean value is the average value. 

To calculate the mean, find the sum of all values, and divide the sum 
by the number of values: 

(99+86+87+88+111+86+103+87+94+78+77+85+86) / 13 = 89.77 

 

Example 

Use the NumPy mean() method to find the average speed: 

import numpy 
 
speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
x = numpy.mean(speed) 
 
print(x) 

 

 

 

 

 

 



 

Median 
The median value is the value in the middle, after you have sorted all 
the values: 

77, 78, 85, 86, 86, 86, 87, 87, 88, 94, 99, 103, 111 

It is important that the numbers are sorted before you can find the 
median. 

The NumPy module has a method for this: 

Example 

Use the NumPy median() method to find the middle value: 

import numpy 
 
speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
x = numpy.median(speed) 
 
print(x) 

If there are two numbers in the middle, divide the sum of those 
numbers by two. 

77, 78, 85, 86, 86, 86, 87, 87, 94, 98, 99, 103 
 

(86 + 87) / 2 = 86.5 

Example 

Using the NumPy module: 

import numpy 
 
speed = [99,86,87,88,86,103,87,94,78,77,85,86] 
 
x = numpy.median(speed) 
 
print(x) 

 

 

 

 

 

 



 

Mode 
The Mode value is the value that appears the most number of times: 

99, 86, 87, 88, 111, 86, 103, 87, 94, 78, 77, 85, 86 = 86 

Example 

Use the SciPy mode() method to find the number that appears the most: 

from scipy import stats 
 
speed = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
x = stats.mode(speed) 
 
print(x) 

 

Chapter Summary 
The Mean, Median, and Mode are techniques that are often used in 
Machine Learning, so it is important to understand the concept behind 
them. 

 

What is Standard Deviation? 
Standard deviation is a number that describes how spread out the 
values are. 

A low standard deviation means that most of the numbers are close to 
the mean (average) value. 

A high standard deviation means that the values are spread out over a 
wider range. 

Example: This time we have registered the speed of 7 cars: 

speed = [86,87,88,86,87,85,86] 

The standard deviation is: 

0.9 

Meaning that most of the values are within the range of 0.9 from the 
mean value, which is 86.4. 

 



 

 

Let us do the same with a selection of numbers with a wider range: 

speed = [32,111,138,28,59,77,97] 

The standard deviation is: 

37.85 

Meaning that most of the values are within the range of 37.85 from the 
mean value, which is 77.4. 

As you can see, a higher standard deviation indicates that the values 
are spread out over a wider range. 

The NumPy module has a method to calculate the standard deviation: 

Example 

Use the NumPy std() method to find the standard deviation: 

import numpy 
 
speed = [86,87,88,86,87,85,86] 
 
x = numpy.std(speed) 
 
print(x) 

Example 
import numpy 
 
speed = [32,111,138,28,59,77,97] 
 
x = numpy.std(speed) 
 
print(x) 

 

 

 

 

 

 

 

 



 

Variance 
Variance is another number that indicates how spread out the values 
are. 

In fact, if you take the square root of the variance, you get the 
standard deviation! 

Or the other way around, if you multiply the standard deviation by 
itself, you get the variance! 

To calculate the variance you have to do as follows: 

1. Find the mean: 

(32+111+138+28+59+77+97) / 7 = 77.4 

2. For each value: find the difference from the mean: 

 32 - 77.4 = -45.4 
111 - 77.4 =  33.6 
138 - 77.4 =  60.6 
 28 - 77.4 = -49.4 
 59 - 77.4 = -18.4 
 77 - 77.4 = - 0.4 
 97 - 77.4 =  19.6 

3. For each difference: find the square value: 

(-45.4)2 = 2061.16 
 (33.6)2 = 1128.96 
 (60.6)2 = 3672.36 
(-49.4)2 = 2440.36 
(-18.4)2 =  338.56 
(- 0.4)2 =    0.16 
 (19.6)2 =  384.16 

4. The variance is the average number of these squared differences: 

(2061.16+1128.96+3672.36+2440.36+338.56+0.16+384.16) / 7 = 1
432.2 

Luckily, NumPy has a method to calculate the variance: 

Example 

Use the NumPy var() method to find the variance: 

import numpy 
 
speed = [32,111,138,28,59,77,97] 
 
x = numpy.var(speed) 
 
print(x) 



 

Standard Deviation 
As we have learned, the formula to find the standard deviation is the 
square root of the variance: 

√1432.25 = 37.85 

Or, as in the example from before, use the NumPy to calculate the 
standard deviation: 

Example 

Use the NumPy std() method to find the standard deviation: 

import numpy 
 
speed = [32,111,138,28,59,77,97] 
 
x = numpy.std(speed) 
 
print(x) 

 

Symbols 

Standard Deviation is often represented by the symbol Sigma: σ 

Variance is often represented by the symbol Sigma Square: σ2 

 

Chapter Summary 
The Standard Deviation and Variance are terms that are often used in 
Machine Learning, so it is important to understand how to get them, 
and the concept behind them. 

 

 

 

 

 

 

 

 



 

What are Percentiles? 
Percentiles are used in statistics to give you a number that describes 
the value that a given percent of the values are lower than. 

Example: Let's say we have an array of the ages of all the people that 
lives in a street. 

ages = 
[5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31] 

What is the 75. percentile? The answer is 43, meaning that 75% of the 
people are 43 or younger. 

The NumPy module has a method for finding the specified percentile: 

Example 

Use the NumPy percentile() method to find the percentiles: 

import numpy 
 
ages 
= [5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31] 
 
x = numpy.percentile(ages, 75) 
 
print(x) 

Example 

What is the age that 90% of the people are younger than? 

import numpy 
 
ages 
= [5,31,43,48,50,41,7,11,15,39,80,82,32,2,8,6,25,36,27,61,31] 
 
x = numpy.percentile(ages, 90) 
 
print(x) 

 

Data Distribution 
Earlier in this tutorial we have worked with very small amounts of data 
in our examples, just to understand the different concepts. 

In the real world, the data sets are much bigger, but it can be difficult 
to gather real world data, at least at an early stage of a project. 

 

 



 

 

How Can we Get Big Data Sets? 

To create big data sets for testing, we use the Python module NumPy, 
which comes with a number of methods to create random data sets, of 
any size. 

Example 

Create an array containing 250 random floats between 0 and 5: 

import numpy 
 
x = numpy.random.uniform(0.0, 5.0, 250) 
 
print(x) 

 

Histogram 
To visualize the data set we can draw a histogram with the data we 
collected. 

We will use the Python module Matplotlib to draw a histogram. 

Example 

Draw a histogram: 

import numpy 
import matplotlib.pyplot as plt 
 
x = numpy.random.uniform(0.0, 5.0, 250) 
 
plt.hist(x, 5) 
plt.show() 



Result: 

 

Histogram Explained 

We use the array from the example above to draw a histogram with 5 
bars. 

The first bar represents how many values in the array are between 0 
and 1. 

The second bar represents how many values are between 1 and 2. 

Etc. 

Which gives us this result: 

x 52 values are between 0 and 1 
x 48 values are between 1 and 2 
x 49 values are between 2 and 3 
x 51 values are between 3 and 4 
x 50 values are between 4 and 5 

Note: The array values are random numbers and will not show the 
exact same result on your computer. 

 

 



 

Big Data Distributions 
An array containing 250 values is not considered very big, but now you 
know how to create a random set of values, and by changing the 
parameters, you can create the data set as big as you want. 

Example 

Create an array with 100000 random numbers, and display them using 
a histogram with 100 bars: 

import numpy 
import matplotlib.pyplot as plt 
 
x = numpy.random.uniform(0.0, 5.0, 100000) 
 
plt.hist(x, 100) 
plt.show() 

Normal Data Distribution 
In the previous chapter we learned how to create a completely random 
array, of a given size, and between two given values. 

In this chapter we will learn how to create an array where the values 
are concentrated around a given value. 

In probability theory this kind of data distribution is known as 
the normal data distribution, or the Gaussian data distribution, after 
the mathematician Carl Friedrich Gauss who came up with the formula 
of this data distribution. 

Example 

A typical normal data distribution: 

import numpy 
import matplotlib.pyplot as plt 
 
x = numpy.random.normal(5.0, 1.0, 100000) 
 
plt.hist(x, 100) 
plt.show() 



Result: 

 

Note: A normal distribution graph is also known as the bell 
curve because of it's characteristic shape of a bell. 

Histogram Explained 

We use the array from the numpy.random.normal() method, with 100000 
values,  to draw a histogram with 100 bars. 

We specify that the mean value is 5.0, and the standard deviation is 
1.0. 

Meaning that the values should be concentrated around 5.0, and rarely 
further away than 1.0 from the mean. 

And as you can see from the histogram, most values are between 4.0 
and 6.0, with a top at approximately 5.0. 

 

 

 

 

 

 



 

Scatter Plot 
A scatter plot is a diagram where each value in the data set is 
represented by a dot. 

 

The Matplotlib module has a method for drawing scatter plots, it needs 
two arrays of the same length, one for the values of the x-axis, and 
one for the values of the y-axis: 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 

y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

The x array represents the age of each car. 

The y array represents the speed of each car. 

Example 

Use the scatter() method to draw a scatter plot diagram: 

import matplotlib.pyplot as plt 
 
x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
plt.scatter(x, y) 
plt.show() 
 

Result: 

 



 

 

Scatter Plot Explained 

The x-axis represents ages, and the y-axis represents speeds. 

What we can read from the diagram is that the two fastest cars were 
both 2 years old, and the slowest car was 12 years old. 

Note: It seems that the newer the car, the faster it drives, but that 
could be a coincidence, after all we only registered 13 cars. 

 

Random Data Distributions 
In Machine Learning the data sets can contain thousands-, or even 
millions, of values. 

You might not have real world data when you are testing an algorithm, 
you might have to use randomly generated values. 

As we have learned in the previous chapter, the NumPy module can 
help us with that! 

Let us create two arrays that are both filled with 1000 random 
numbers from a normal data distribution. 

The first array will have the mean set to 5.0 with a standard deviation 
of 1.0. 

The second array will have the mean set to 10.0 with a standard 
deviation of 2.0: 

Example 

A scatter plot with 1000 dots: 

import numpy 
import matplotlib.pyplot as plt 
 
x = numpy.random.normal(5.0, 1.0, 1000) 
y = numpy.random.normal(10.0, 2.0, 1000) 
 
plt.scatter(x, y) 
plt.show() 
 



Result: 

 

Scatter Plot Explained 

We can see that the dots are concentrated around the value 5 on the 
x-axis, and 10 on the y-axis. 

We can also see that the spread is wider on the y-axis than on the x-
axis. 

 

Regression 
The term regression is used when you try to find the relationship 
between variables. 

In Machine Learning, and in statistical modeling, that relationship is 
used to predict the outcome of future events. 

 

 

 

 

 



 

Linear Regression 
Linear regression uses the relationship between the data-points to 
draw a straight line through all them. 

This line can be used to predict future values. 

 

In Machine Learning, predicting the future is very important. 

 

How Does it Work? 
Python has methods for finding a relationship between data-points and 
to draw a line of linear regression. We will show you how to use these 
methods instead of going through the mathematic formula. 

 

 

 

 

 

 



 

In the example below, the x-axis represents age, and the y-axis 
represents speed. We have registered the age and speed of 13 cars as 
they were passing a tollbooth. Let us see if the data we collected could 
be used in a linear regression: 

Example 

Start by drawing a scatter plot: 

import matplotlib.pyplot as plt 
 
x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
plt.scatter(x, y) 
plt.show() 

Result: 

 



 

 

 

  

Example 

Import scipy and draw the line of Linear Regression: 

import matplotlib.pyplot as plt 
from scipy import stats 
 
x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
slope, intercept, r, p, std_err = stats.linregress(x, y) 
 
def myfunc(x): 
  return slope * x + intercept 
 
mymodel = list(map(myfunc, x)) 
 
plt.scatter(x, y) 
plt.plot(x, mymodel) 
plt.show() 

Result: 

 



 

Example Explained 

Import the modules you need. 

You can learn about the Matplotlib module in our Matplotlib Tutorial. 

You can learn about the SciPy module in our SciPy Tutorial. 

import matplotlib.pyplot as plt 
from scipy import stats 

Create the arrays that represent the values of the x and y axis: 

x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 

Execute a method that returns some important key values of Linear 
Regression: 

slope, intercept, r, p, std_err = stats.linregress(x, y) 

Create a function that uses the slope and intercept values to return a 
new value. This new value represents where on the y-axis the 
corresponding x value will be placed: 

def myfunc(x): 
  return slope * x + intercept 

Run each value of the x array through the function. This will result in a 
new array with new values for the y-axis: 

mymodel = list(map(myfunc, x)) 

Draw the original scatter plot: 

plt.scatter(x, y) 

Draw the line of linear regression: 

plt.plot(x, mymodel) 

Display the diagram: 

plt.show() 

 

 

 

 

 

 



 

R for Relationship 
It is important to know how the relationship between the values of the 
x-axis and the values of the y-axis is, if there are no relationship the 
linear regression can not be used to predict anything. 

This relationship - the coefficient of correlation - is called r. 

The r value ranges from -1 to 1, where 0 means no relationship, and 1 
(and -1) means 100% related. 

Python and the Scipy module will compute this value for you, all you 
have to do is feed it with the x and y values. 

Example 

How well does my data fit in a linear regression? 

from scipy import stats 
 
x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
slope, intercept, r, p, std_err = stats.linregress(x, y) 
 
print(r) 
 

Note: The result -0.76 shows that there is a relationship, not perfect, 
but it indicates that we could use linear regression in future 
predictions. 

 

 

 

 

 

 

 

 



 

Predict Future Values 
Now we can use the information we have gathered to predict future 
values. 

Example: Let us try to predict the speed of a 10 years old car. 

To do so, we need the same myfunc() function from the example above: 

def myfunc(x): 
  return slope * x + intercept 

Example 

Predict the speed of a 10 years old car: 

from scipy import stats 
 
x = [5,7,8,7,2,17,2,9,4,11,12,9,6] 
y = [99,86,87,88,111,86,103,87,94,78,77,85,86] 
 
slope, intercept, r, p, std_err = stats.linregress(x, y) 
 
def myfunc(x): 
  return slope * x + intercept 
 
speed = myfunc(10) 
 
print(speed) 

The example predicted a speed at 85.6, which we also could read from 
the diagram: 



 

 

Bad Fit? 
Let us create an example where linear regression would not be the 
best method to predict future values. 

Example 

These values for the x- and y-axis should result in a very bad fit for 
linear regression: 

import matplotlib.pyplot as plt 
from scipy import stats 
 
x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 
 
slope, intercept, r, p, std_err = stats.linregress(x, y) 
 
def myfunc(x): 
  return slope * x + intercept 
 
mymodel = list(map(myfunc, x)) 
 
plt.scatter(x, y) 
plt.plot(x, mymodel) 
plt.show() 



Result: 

 

And the r for relationship? 

Example 

You should get a very low r value. 

import numpy 
from scipy import stats 
 
x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 
 
slope, intercept, r, p, std_err = stats.linregress(x, y) 
 
print(r) 
 

The result: 0.013 indicates a very bad relationship, and tells us that 
this data set is not suitable for linear regression. 

 

 

 



 

Polynomial Regression 
If your data points clearly will not fit a linear regression (a straight line 
through all data points), it might be ideal for polynomial regression. 

Polynomial regression, like linear regression, uses the relationship 
between the variables x and y to find the best way to draw a line 
through the data points. 

 

 

How Does it Work? 
Python has methods for finding a relationship between data-points and 
to draw a line of polynomial regression. We will show you how to use 
these methods instead of going through the mathematic formula. 

In the example below, we have registered 18 cars as they were 
passing a certain tollbooth. 

We have registered the car's speed, and the time of day (hour) the 
passing occurred. 

The x-axis represents the hours of the day and the y-axis represents 
the speed: 

 



 

Example 

Start by drawing a scatter plot: 

import matplotlib.pyplot as plt 
 
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 
 
plt.scatter(x, y) 
plt.show() 

Result: 

 

 
 

 

 

 

 

 

 

 

 



 

Example 

Import numpy and matplotlib then draw the line of Polynomial 
Regression: 

import numpy 
import matplotlib.pyplot as plt 
 
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 
 
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 
 
myline = numpy.linspace(1, 22, 100) 
 
plt.scatter(x, y) 
plt.plot(myline, mymodel(myline)) 
plt.show() 

Result: 

 



 

 

 

Example Explained 

Import the modules you need. 

You can learn about the NumPy module in our NumPy Tutorial. 

You can learn about the SciPy module in our SciPy Tutorial. 

import numpy 
import matplotlib.pyplot as plt 

Create the arrays that represent the values of the x and y axis: 

x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 
y 
= [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 

NumPy has a method that lets us make a polynomial model: 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

Then specify how the line will display, we start at position 1, and end 
at position 22: 

myline = numpy.linspace(1, 22, 100) 

Draw the original scatter plot: 

plt.scatter(x, y) 

Draw the line of polynomial regression: 

plt.plot(myline, mymodel(myline)) 

Display the diagram: 

plt.show() 

 

 

 

 

 

 

 



 

R-Squared 
It is important to know how well the relationship between the values of 
the x- and y-axis is, if there are no relationship the polynomial 
regression can not be used to predict anything. 

The relationship is measured with a value called the r-squared. 

The r-squared value ranges from 0 to 1, where 0 means no 
relationship, and 1 means 100% related. 

Python and the Sklearn module will compute this value for you, all you 
have to do is feed it with the x and y arrays: 

Example 

How well does my data fit in a polynomial regression? 

import numpy 
from sklearn.metrics import r2_score 
 
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 
 
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 
 
print(r2_score(y, mymodel(x))) 

Note: The result 0.94 shows that there is a very good relationship, 
and we can use polynomial regression in future predictions. 

 

Predict Future Values 
Now we can use the information we have gathered to predict future 
values. 

Example: Let us try to predict the speed of a car that passes the 
tollbooth at around 17 P.M: 

To do so, we need the same mymodel array from the example above: 

mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 

 

 

 

 

 



 

Example 

Predict the speed of a car passing at 17 P.M: 

import numpy 
from sklearn.metrics import r2_score 
 
x = [1,2,3,5,6,7,8,9,10,12,13,14,15,16,18,19,21,22] 
y = [100,90,80,60,60,55,60,65,70,70,75,76,78,79,90,99,99,100] 
 
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 
 
speed = mymodel(17) 
print(speed) 

The example predicted a speed to be 88.87, which we also could read 
from the diagram: 

 

 

Bad Fit? 
Let us create an example where polynomial regression would not be 
the best method to predict future values. 

 

 



 

Example 

These values for the x- and y-axis should result in a very bad fit for 
polynomial regression: 

import numpy 
import matplotlib.pyplot as plt 
 
x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 
 
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 
 
myline = numpy.linspace(2, 95, 100) 
 
plt.scatter(x, y) 
plt.plot(myline, mymodel(myline)) 
plt.show() 

Result: 

 

And the r-squared value? 

 

 

 



 

Example 

You should get a very low r-squared value. 

import numpy 
from sklearn.metrics import r2_score 
 
x = [89,43,36,36,95,10,66,34,38,20,26,29,48,64,6,5,36,66,72,40] 
y = [21,46,3,35,67,95,53,72,58,10,26,34,90,33,38,20,56,2,47,15] 
 
mymodel = numpy.poly1d(numpy.polyfit(x, y, 3)) 
 
print(r2_score(y, mymodel(x))) 
 

The result: 0.00995 indicates a very bad relationship, and tells us that 
this data set is not suitable for polynomial regression. 

Multiple Regression 
Multiple regression is like linear regression, but with more than one 
independent value, meaning that we try to predict a value based 
on two or more variables. 

Take a look at the data set below, it contains some information about 
cars. 

Car Model Volume Weight CO2  

Toyota Aygo 1000 790 99 

Mitsubishi Space Star 1200 1160 95 

Skoda Citigo 1000 929 95 

Fiat 500 900 865 90 

Mini Cooper 1500 1140 105 

VW Up! 1000 929 105 

Skoda Fabia 1400 1109 90 

Mercedes A-Class 1500 1365 92 

Ford Fiesta 1500 1112 98 

Audi A1 1600 1150 99 



Hyundai I20 1100 980 99 

Suzuki Swift 1300 990 101 

Ford Fiesta 1000 1112 99 

Honda Civic 1600 1252 94 

Hundai I30 1600 1326 97 

Opel Astra 1600 1330 97 

BMW 1 1600 1365 99 

Mazda 3 2200 1280 104 

Skoda Rapid 1600 1119 104 

Ford Focus 2000 1328 105 

Ford Mondeo 1600 1584 94 

Opel Insignia 2000 1428 99 

Mercedes C-Class 2100 1365 99 

Skoda Octavia 1600 1415 99 

Volvo S60 2000 1415 99 

Mercedes CLA 1500 1465 102 

Audi A4 2000 1490 104 

Audi A6 2000 1725 114 

Volvo V70 1600 1523 109 

BMW 5 2000 1705 114 

Mercedes E-Class 2100 1605 115 

Volvo XC70 2000 1746 117 

Ford B-Max 1600 1235 104 



BMW 2 1600 1390 108 

Opel Zafira 1600 1405 109 

Mercedes SLK 2500 1395 120 

We can predict the CO2 emission of a car based on the size of the 
engine, but with multiple regression we can throw in more variables, 
like the weight of the car, to make the prediction more accurate. 

 

How Does it Work? 
In Python we have modules that will do the work for us. Start by 
importing the Pandas module. 

import pandas 

Learn about the Pandas module in our Pandas Tutorial. 

The Pandas module allows us to read csv files and return a DataFrame 
object. 

The file is meant for testing purposes only, you can download it 
here: cars.csv 

df = pandas.read_csv("cars.csv") 

Then make a list of the independent values and call this variable X. 

Put the dependent values in a variable called y. 

X = df[['Weight', 'Volume']] 
y = df['CO2'] 

Tip: It is common to name the list of independent values with a upper 
case X, and the list of dependent values with a lower case y. 

We will use some methods from the sklearn module, so we will have to 
import that module as well: 

from sklearn import linear_model 

From the sklearn module we will use the LinearRegression() method to 
create a linear regression object. 

This object has a method called fit() that takes the independent and 
dependent values as parameters and fills the regression object with 
data that describes the relationship: 

regr = linear_model.LinearRegression() 
regr.fit(X, y) 

 



 

 

Now we have a regression object that are ready to predict CO2 values 
based on a car's weight and volume: 

#predict the CO2 emission of a car where the weight is 
2300kg, and the volume is 1300cm3: 
predictedCO2 = regr.predict([[2300, 1300]]) 

Example 

See the whole example in action: 

import pandas 
from sklearn import linear_model 
 
df = pandas.read_csv("cars.csv") 
 
X = df[['Weight', 'Volume']] 
y = df['CO2'] 
 
regr = linear_model.LinearRegression() 
regr.fit(X, y) 
 
#predict the CO2 emission of a car where the weight is 2300kg, 
and the volume is 1300cm3: 
predictedCO2 = regr.predict([[2300, 1300]]) 
 
print(predictedCO2) 

Result: 
[107.2087328] 

We have predicted that a car with 1.3 liter engine, and a weight of 
2300 kg, will release approximately 107 grams of CO2 for every 
kilometer it drives. 

 

Coefficient 
The coefficient is a factor that describes the relationship with an 
unknown variable. 

Example: if x is a variable, then 2x is x two times. x is the unknown 
variable, and the number 2 is the coefficient. 

In this case, we can ask for the coefficient value of weight against 
CO2, and for volume against CO2. The answer(s) we get tells us what 
would happen if we increase, or decrease, one of the independent 
values. 

 



 

 

Example 

Print the coefficient values of the regression object: 

import pandas 
from sklearn import linear_model 
 
df = pandas.read_csv("cars.csv") 
 
X = df[['Weight', 'Volume']] 
y = df['CO2'] 
 
regr = linear_model.LinearRegression() 
regr.fit(X, y) 
 
print(regr.coef_) 

Result: 
[0.00755095 0.00780526] 

 

Result Explained 
The result array represents the coefficient values of weight and 
volume. 

Weight: 0.00755095 
Volume: 0.00780526 

These values tell us that if the weight increase by 1kg, the CO2 
emission increases by 0.00755095g. 

And if the engine size (Volume) increases by 1 cm3, the CO2 emission 
increases by 0.00780526 g. 

I think that is a fair guess, but let test it! 

We have already predicted that if a car with a 1300cm3 engine weighs 
2300kg, the CO2 emission will be approximately 107g. 

 

 

 

 

 

 



 

 

What if we increase the weight with 1000kg? 

Example 

Copy the example from before, but change the weight from 2300 to 
3300: 

import pandas 
from sklearn import linear_model 
 
df = pandas.read_csv("cars.csv") 
 
X = df[['Weight', 'Volume']] 
y = df['CO2'] 
 
regr = linear_model.LinearRegression() 
regr.fit(X, y) 
 
predictedCO2 = regr.predict([[3300, 1300]]) 
 
print(predictedCO2) 

Result: 
[114.75968007] 

We have predicted that a car with 1.3 liter engine, and a weight of 
3300 kg, will release approximately 115 grams of CO2 for every 
kilometer it drives. 

Which shows that the coefficient of 0.00755095 is correct: 

107.2087328 + (1000 * 0.00755095) = 114.75968 

 

 

 

 

 

 

 



 

Scale Features 
When your data has different values, and even different measurement 
units, it can be difficult to compare them. What is kilograms compared 
to meters? Or altitude compared to time? 

The answer to this problem is scaling. We can scale data into new 
values that are easier to compare. 

Take a look at the table below, it is the same data set that we used in 
the multiple regression chapter, but this time the volume column 
contains values in liters instead of cm3 (1.0 instead of 1000). 

Car Model Volume Weight CO2  

Toyota Aygo 1.0 790 99 

Mitsubishi Space Star 1.2 1160 95 

Skoda Citigo 1.0 929 95 

Fiat 500 0.9 865 90 

Mini Cooper 1.5 1140 105 

VW Up! 1.0 929 105 

Skoda Fabia 1.4 1109 90 

Mercedes A-Class 1.5 1365 92 

Ford Fiesta 1.5 1112 98 

Audi A1 1.6 1150 99 

Hyundai I20 1.1 980 99 

Suzuki Swift 1.3 990 101 

Ford Fiesta 1.0 1112 99 

Honda Civic 1.6 1252 94 

Hundai I30 1.6 1326 97 



Opel Astra 1.6 1330 97 

BMW 1 1.6 1365 99 

Mazda 3 2.2 1280 104 

Skoda Rapid 1.6 1119 104 

Ford Focus 2.0 1328 105 

Ford Mondeo 1.6 1584 94 

Opel Insignia 2.0 1428 99 

Mercedes C-Class 2.1 1365 99 

Skoda Octavia 1.6 1415 99 

Volvo S60 2.0 1415 99 

Mercedes CLA 1.5 1465 102 

Audi A4 2.0 1490 104 

Audi A6 2.0 1725 114 

Volvo V70 1.6 1523 109 

BMW 5 2.0 1705 114 

Mercedes E-Class 2.1 1605 115 

Volvo XC70 2.0 1746 117 

Ford B-Max 1.6 1235 104 

BMW 2 1.6 1390 108 

Opel Zafira 1.6 1405 109 

Mercedes SLK 2.5 1395 120 

It can be difficult to compare the volume 1.0 with the weight 790, but 
if we scale them both into comparable values, we can easily see how 
much one value is compared to the other. 

 



 

 

There are different methods for scaling data, in this tutorial we will use 
a method called standardization. 

The standardization method uses this formula: 

z = (x - u) / s 

Where z is the new value, x is the original value, u is the mean and s is 
the standard deviation. 

If you take the weight column from the data set above, the first value 
is 790, and the scaled value will be: 

(790 - 1292.23) / 238.74 = -2.1 

If you take the volume column from the data set above, the first value 
is 1.0, and the scaled value will be: 

(1.0 - 1.61) / 0.38 = -1.59 

Now you can compare -2.1 with -1.59 instead of comparing 790 with 
1.0. 

You do not have to do this manually, the Python sklearn module has a 
method called StandardScaler() which returns a Scaler object with 
methods for transforming data sets. 

Example 

Scale all values in the Weight and Volume columns: 

import pandas 
from sklearn import linear_model 
from sklearn.preprocessing import StandardScaler 
scale = StandardScaler() 
 
df = pandas.read_csv("cars2.csv") 
 
X = df[['Weight', 'Volume']] 
 
scaledX = scale.fit_transform(X) 
 
print(scaledX) 

 
 

 

 

 



Result: 

Note that the first two values are -2.1 and -1.59, which corresponds to 
our calculations: 

[[-2.10389253 -1.59336644] 
 [-0.55407235 -1.07190106] 
 [-1.52166278 -1.59336644] 
 [-1.78973979 -1.85409913] 
 [-0.63784641 -0.28970299] 
 [-1.52166278 -1.59336644] 
 [-0.76769621 -0.55043568] 
 [ 0.3046118  -0.28970299] 
 [-0.7551301  -0.28970299] 
 [-0.59595938 -0.0289703 ] 
 [-1.30803892 -1.33263375] 
 [-1.26615189 -0.81116837] 
 [-0.7551301  -1.59336644] 
 [-0.16871166 -0.0289703 ] 
 [ 0.14125238 -0.0289703 ] 
 [ 0.15800719 -0.0289703 ] 
 [ 0.3046118  -0.0289703 ] 
 [-0.05142797  1.53542584] 
 [-0.72580918 -0.0289703 ] 
 [ 0.14962979  1.01396046] 
 [ 1.2219378  -0.0289703 ] 
 [ 0.5685001   1.01396046] 
 [ 0.3046118   1.27469315] 
 [ 0.51404696 -0.0289703 ] 
 [ 0.51404696  1.01396046] 
 [ 0.72348212 -0.28970299] 
 [ 0.8281997   1.01396046] 
 [ 1.81254495  1.01396046] 
 [ 0.96642691 -0.0289703 ] 
 [ 1.72877089  1.01396046] 
 [ 1.30990057  1.27469315] 
 [ 1.90050772  1.01396046] 
 [-0.23991961 -0.0289703 ] 
 [ 0.40932938 -0.0289703 ] 
 [ 0.47215993 -0.0289703 ] 
 [ 0.4302729   2.31762392]] 

 

Predict CO2 Values 
The task in the Multiple Regression chapter was to predict the CO2 
emission from a car when you only knew its weight and volume. 

When the data set is scaled, you will have to use the scale when you 
predict values: 

 

 

 

 



 

 

Example 

Predict the CO2 emission from a 1.3 liter car that weighs 2300 
kilograms: 

import pandas 
from sklearn import linear_model 
from sklearn.preprocessing import StandardScaler 
scale = StandardScaler() 
 
df = pandas.read_csv("cars2.csv") 
 
X = df[['Weight', 'Volume']] 
y = df['CO2'] 
 
scaledX = scale.fit_transform(X) 
 
regr = linear_model.LinearRegression() 
regr.fit(scaledX, y) 
 
scaled = scale.transform([[2300, 1.3]]) 
 
predictedCO2 = regr.predict([scaled[0]]) 
print(predictedCO2) 

Result: 
[107.2087328] 

 

Evaluate Your Model 
In Machine Learning we create models to predict the outcome of 
certain events, like in the previous chapter where we predicted the 
CO2 emission of a car when we knew the weight and engine size. 

To measure if the model is good enough, we can use a method called 
Train/Test. 

 

 

 

 

 

 



 

What is Train/Test 
Train/Test is a method to measure the accuracy of your model. 

It is called Train/Test because you split the the data set into two sets: 
a training set and a testing set. 

80% for training, and 20% for testing. 

You train the model using the training set. 

You test the model using the testing set. 

Train the model means create the model. 

Test the model means test the accuracy of the model. 

 

Start With a Data Set 
Start with a data set you want to test. 

Our data set illustrates 100 customers in a shop, and their shopping 
habits. 

Example 
import numpy 
import matplotlib.pyplot as plt 
numpy.random.seed(2) 
 
x = numpy.random.normal(3, 1, 100) 
y = numpy.random.normal(150, 40, 100) / x 
 
plt.scatter(x, y) 
plt.show() 

Result: 

The x axis represents the number of minutes before making a 
purchase. 

The y axis represents the amount of money spent on the purchase. 



 

 

Split Into Train/Test 
The training set should be a random selection of 80% of the original 
data. 

The testing set should be the remaining 20%. 

train_x = x[:80] 
train_y = y[:80] 
 
test_x = x[80:] 
test_y = y[80:] 

 

 

 

 

 

 

 

 



 

Display the Training Set 
Display the same scatter plot with the training set: 

Example 
plt.scatter(train_x, train_y) 
plt.show() 

Result: 

It looks like the original data set, so it seems to be a fair selection: 

 

 

 

 

 

 

 

 

 



 

Display the Testing Set 
To make sure the testing set is not completely different, we will take a 
look at the testing set as well. 

Example 
plt.scatter(test_x, test_y) 
plt.show() 

Result: 

The testing set also looks like the original data set: 

 

 

Fit the Data Set 
What does the data set look like? In my opinion I think the best fit 
would be a polynomial regression, so let us draw a line of polynomial 
regression. 

To draw a line through the data points, we use the plot() method of 
the matplotlib module: 

 



 

Example 

Draw a polynomial regression line through the data points: 

import numpy 
import matplotlib.pyplot as plt 
numpy.random.seed(2) 
 
x = numpy.random.normal(3, 1, 100) 
y = numpy.random.normal(150, 40, 100) / x 
 
train_x = x[:80] 
train_y = y[:80] 
 
test_x = x[80:] 
test_y = y[80:] 
 
mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4)) 
 
myline = numpy.linspace(0, 6, 100) 
 
plt.scatter(train_x, train_y) 
plt.plot(myline, mymodel(myline)) 
plt.show() 

Result: 

 

 



 

 

The result can back my suggestion of the data set fitting a polynomial 
regression, even though it would give us some weird results if we try 
to predict values outside of the data set. Example: the line indicates 
that a customer spending 6 minutes in the shop would make a 
purchase worth 200. That is probably a sign of overfitting. 

But what about the R-squared score? The R-squared score is a good 
indicator of how well my data set is fitting the model. 

 

R2 
Remember R2, also known as R-squared? 

It measures the relationship between the x axis and the y axis, and the 
value ranges from 0 to 1, where 0 means no relationship, and 1 means 
totally related. 

The sklearn module has a method called r2_score() that will help us find 
this relationship. 

In this case we would like to measure the relationship between the 
minutes a customer stays in the shop and how much money they 
spend. 

Example 

How well does my training data fit in a polynomial regression? 

import numpy 
from sklearn.metrics import r2_score 
numpy.random.seed(2) 
 
x = numpy.random.normal(3, 1, 100) 
y = numpy.random.normal(150, 40, 100) / x 
 
train_x = x[:80] 
train_y = y[:80] 
 
test_x = x[80:] 
test_y = y[80:] 
 
mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4)) 
 
r2 = r2_score(train_y, mymodel(train_x)) 
 
print(r2) 

Note: The result 0.799 shows that there is a OK relationship. 

 



 

Bring in the Testing Set 
Now we have made a model that is OK, at least when it comes to 
training data. 

Now we want to test the model with the testing data as well, to see if 
gives us the same result. 

Example 

Let us find the R2 score when using testing data: 

import numpy 
from sklearn.metrics import r2_score 
numpy.random.seed(2) 
 
x = numpy.random.normal(3, 1, 100) 
y = numpy.random.normal(150, 40, 100) / x 
 
train_x = x[:80] 
train_y = y[:80] 
 
test_x = x[80:] 
test_y = y[80:] 
 
mymodel = numpy.poly1d(numpy.polyfit(train_x, train_y, 4)) 
 
r2 = r2_score(test_y, mymodel(test_x)) 
 
print(r2) 

Note: The result 0.809 shows that the model fits the testing set as 
well, and we are confident that we can use the model to predict future 
values. 

 

 

 

 

 

 

 

 

 



 

Predict Values 
Now that we have established that our model is OK, we can start 
predicting new values. 

Example 

How much money will a buying customer spend, if she or he stays in 
the shop for 5 minutes? 

print(mymodel(5)) 

The example predicted the customer to spend 22.88 dollars, as seems 
to correspond to the diagram: 

 

 

 

 

 

 

 

 



 

 

 

Decision Tree 
In this chapter we will show you how to make a "Decision Tree". A 
Decision Tree is a Flow Chart, and can help you make decisions based 
on previous experience. 

In the example, a person will try to decide if he/she should go to a 
comedy show or not. 

Luckily our example person has registered every time there was a 
comedy show in town, and registered some information about the 
comedian, and also registered if he/she went or not. 

Now, based on this data set, Python can create a decision tree that can 
be used to decide if any new shows are worth attending to. 

 



 

Age Experience Rank Nationality Go 

36 10 9 UK NO 

42 12 4 USA NO 

23 4 6 N NO 

52 4 4 USA NO 

43 21 8 USA YES 

44 14 5 UK NO 

66 3 7 N YES 

35 14 9 UK YES 

52 13 7 N YES 

35 5 9 N YES 

24 3 5 USA NO 

18 3 7 UK YES 

45 9 9 UK YES 



 

How Does it Work? 
First, import the modules you need, and read the dataset with pandas: 

Example 

Read and print the data set: 

import pandas 
from sklearn import tree 
import pydotplus 
from sklearn.tree import DecisionTreeClassifier 
import matplotlib.pyplot as plt 
import matplotlib.image as pltimg 
 
df = pandas.read_csv("shows.csv") 
 
print(df) 

To make a decision tree, all data has to be numerical. 

We have to convert the non numerical columns 'Nationality' and 'Go' 
into numerical values. 

Pandas has a map() method that takes a dictionary with information on 
how to convert the values. 

{'UK': 0, 'USA': 1, 'N': 2} 

Means convert the values 'UK' to 0, 'USA' to 1, and 'N' to 2. 

Example 

Change string values into numerical values: 

d = {'UK': 0, 'USA': 1, 'N': 2} 
df['Nationality'] = df['Nationality'].map(d) 
d = {'YES': 1, 'NO': 0} 
df['Go'] = df['Go'].map(d) 
 
print(df) 

Then we have to separate the feature columns from the target column. 

 

 

 

 

 



 

 

The feature columns are the columns that we try to predict from, and 
the target column is the column with the values we try to predict. 

Example 

X is the feature columns, y is the target column: 

features = ['Age', 'Experience', 'Rank', 'Nationality'] 
 
X = df[features] 
y = df['Go'] 
 
print(X) 
print(y) 

Now we can create the actual decision tree, fit it with our details, and 
save a .png file on the computer: 

Example 

Create a Decision Tree, save it as an image, and show the image: 

dtree = DecisionTreeClassifier() 
dtree = dtree.fit(X, y) 
data = tree.export_graphviz(dtree, out_file=None, 
feature_names=features) 
graph = pydotplus.graph_from_dot_data(data) 
graph.write_png('mydecisiontree.png') 
 
img=pltimg.imread('mydecisiontree.png') 
imgplot = plt.imshow(img) 
plt.show() 

 

 

 

 

 

 

 

 

 

 



 

 

Result Explained 
The decision tree uses your earlier decisions to calculate the odds for 
you to wanting to go see a comedian or not. 

Let us read the different aspects of the decision tree: 

 

Rank 

Rank <= 6.5 means that every comedian with a rank of 6.5 or lower will 
follow the True arrow (to the left), and the rest will follow 
the False arrow (to the right). 

gini = 0.497 refers to the quality of the split, and is always a number 
between 0.0 and 0.5, where 0.0 would mean all of the samples got the 
same result, and 0.5 would mean that the split is done exactly in the 
middle. 

samples = 13 means that there are 13 comedians left at this point in the 
decision, which is all of them since this is the first step. 

value = [6, 7] means that of these 13 comedians, 6 will get a "NO", and 
7 will get a "GO". 

Gini 

There are many ways to split the samples, we use the GINI method in 
this tutorial. 

The Gini method uses this formula: 

Gini = 1 - (x/n)2 - (y/n)2 

Where x is the number of positive answers("GO"), n is the number of 
samples, and y is the number of negative answers ("NO"), which gives 
us this calculation: 

1 - (7 / 13)2 - (6 / 13)2 = 0.497 



 

The next step contains two boxes, one box for the comedians with a 
'Rank' of 6.5 or lower, and one box with the rest. 

True - 5 Comedians End Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 5 means that there are 5 comedians left in this branch (5 
comedian with a Rank of 6.5 or lower). 

value = [5, 0] means that 5 will get a "NO" and 0 will get a "GO". 

False - 8 Comedians Continue: 

Nationality 

Nationality <= 0.5 means that the comedians with a nationality value of 
less than 0.5 will follow the arrow to the left (which means everyone 
from the UK, ), and the rest will follow the arrow to the right. 

gini = 0.219 means that about 22% of the samples would go in one 
direction. 

samples = 8 means that there are 8 comedians left in this branch (8 
comedian with a Rank higher than 6.5). 

value = [1, 7] means that of these 8 comedians, 1 will get a "NO" and 7 
will get a "GO". 

 

 

 
 



 

True - 4 Comedians Continue: 

Age 

Age <= 35.5 means that comedians at the age of 35.5 or younger will 
follow the arrow to the left, and the rest will follow the arrow to the 
right. 

gini = 0.375 means that about 37,5% of the samples would go in one 
direction. 

samples = 4 means that there are 4 comedians left in this branch (4 
comedians from the UK). 

value = [1, 3] means that of these 4 comedians, 1 will get a "NO" and 3 
will get a "GO". 

False - 4 Comedians End Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 4 means that there are 4 comedians left in this branch (4 
comedians not from the UK). 

value = [0, 4] means that of these 4 comedians, 0 will get a "NO" and 4 
will get a "GO". 

 

 

 
 



 

True - 2 Comedians End Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 2 means that there are 2 comedians left in this branch (2 
comedians at the age 35.5 or younger). 

value = [0, 2] means that of these 2 comedians, 0 will get a "NO" and 2 
will get a "GO". 

False - 2 Comedians Continue: 

Experience 

Experience <= 9.5 means that comedians with 9.5 years of experience, 
or less, will follow the arrow to the left, and the rest will follow the 
arrow to the right. 

gini = 0.5 means that 50% of the samples would go in one direction. 

samples = 2 means that there are 2 comedians left in this branch (2 
comedians older than 35.5). 

value = [1, 1] means that of these 2 comedians, 1 will get a "NO" and 1 
will get a "GO". 

 

 

 
 



 

True - 1 Comedian Ends Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 1 means that there is 1 comedian left in this branch (1 
comedian with 9.5 years of experience or less). 

value = [0, 1] means that 0 will get a "NO" and 1 will get a "GO". 

False - 1 Comedian Ends Here: 

gini = 0.0 means all of the samples got the same result. 

samples = 1 means that there is 1 comedians left in this branch (1 
comedian with more than 9.5 years of experience). 

value = [1, 0] means that 1 will get a "NO" and 0 will get a "GO". 

 

Predict Values 
We can use the Decision Tree to predict new values. 

Example: Should I go see a show starring a 40 years old American 
comedian, with 10 years of experience, and a comedy ranking of 7? 

Example 

Use predict() method to predict new values: 

print(dtree.predict([[40, 10, 7, 1]])) 

Example 

What would the answer be if the comedy rank was 6? 

print(dtree.predict([[40, 10, 6, 1]])) 

 



Different Results 

You will see that the Decision Tree gives you different results if you run 
it enough times, even if you feed it with the same data. 

That is because the Decision Tree does not give us a 100% certain 
answer. It is based on the probability of an outcome, and the answer 
will vary. 
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