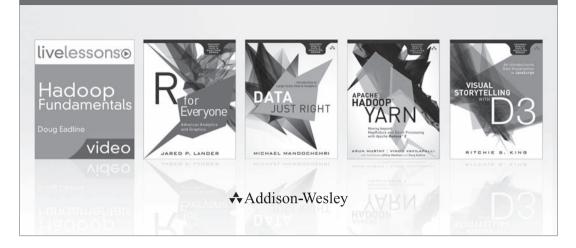


for Everyone

Advanced Analytics and Graphics

JARED P. LANDER

FREE SAMPLE CHAPTER



SHARE WITH OTHERS

R for Everyone

The Addison-Wesley Data and Analytics Series

Visit informit.com/awdataseries for a complete list of available publications.

The Addison-Wesley Data and Analytics Series provides readers with practical knowledge for solving problems and answering questions with data. Titles in this series primarily focus on three areas:

- 1. Infrastructure: how to store, move, and manage data
- 2. Algorithms: how to mine intelligence or make predictions based on data
- 3. Visualizations: how to represent data and insights in a meaningful and compelling way

The series aims to tie all three of these areas together to help the reader build end-to-end systems for fighting spam; making recommendations; building personalization; detecting trends, patterns, or problems; and gaining insight from the data exhaust of systems and user interactions.

Make sure to connect with us! informit.com/socialconnect

♣Addison-Wesley

ALWAYS LEARNING PEARSON

R for Everyone

Advanced Analytics and Graphics

Jared P. Lander

♣Addison-Wesley

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Lander, Jared P.

R for everyone / Jared P. Lander.

pages cm

005.13-dc23

Includes bibliographical references.

ISBN-13: 978-0-321-88803-7 (alk. paper)

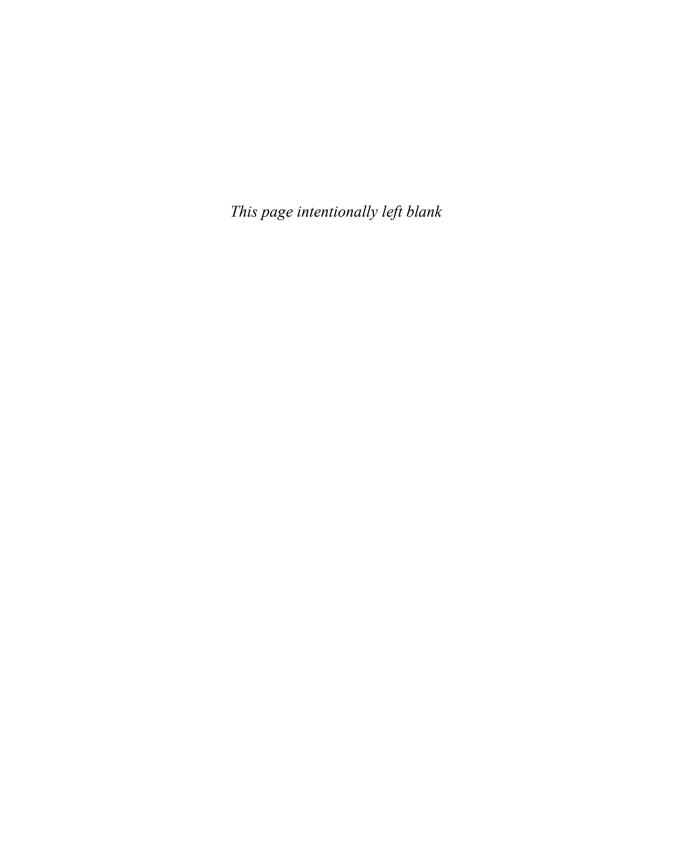
ISBN-10: 0-321-88803-0 (alk. paper)

1. R (Computer program language) 2. Scripting languages (Computer science) 3. Statistics—Data processing. 4. Statistics—Graphic methods—Data processing. 5. Computer simulation. I. Title. QA76.73.R3L36 2014

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

2013027407


ISBN-13: 978-0-321-88803-7 ISBN-10: 0-321-88803-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing, December 2013

To my mother and father

*

Contents

	Fore	word xiii							
	Pref	ace xv							
	Acknowledgments xix								
	Abo	ut the Author xxiii							
1	Gett	ing R 1							
	1.1								
	1.2	R Version 2							
		32-bit versus 64-bit 2							
	1.4	Installing 2							
		Revolution R Community Edition 1	C						
	1.6	Conclusion 11							
2	The	R Environment 13							
	2.1	Command Line Interface 14							
	2.2	RStudio 15							
	2.3	Revolution Analytics RPE 26							
	2.4	Conclusion 27							
3	R Pa	ickages 29							
	3.1	Installing Packages 29							
	3.2	Loading Packages 32							
	3.3	Building a Package 33							
		Conclusion 33							
4	Basi	cs of R 35							
	4.1								
	4.2								
	4.3	Data Types 38							
	4.4	Vectors 43							
	4.5								
	4.6	Function Documentation 49							
	4.7								
	4.8	Conclusion 51							

5 Adva	nced Data	Structures	53
--------	-----------	------------	----

- 5.1 data.frames 53
- 5.2 Lists 61
- 5.3 Matrices 68
- 5.4 Arrays 71
- 5.5 Conclusion 72

6 Reading Data into R 73

- 6.1 Reading CSVs 73
- 6.2 Excel Data 74
- 6.3 Reading from Databases 75
- 6.4 Data from Other Statistical Tools 77
- 6.5 R Binary Files 77
- 6.6 Data Included with R 79
- 6.7 Extract Data from Web Sites 80
- 6.8 Conclusion 81

7 Statistical Graphics 83

- 7.1 Base Graphics 83
- 7.2 ggplot2 86
- 7.3 Conclusion 98

8 Writing R Functions 99

- 8.1 Hello, World! 99
- 8.2 Function Arguments 100
- 8.3 Return Values 103
- 8.4 do.call 104
- 8.5 Conclusion 104

9 Control Statements 105

- 9.1 if and else 105
- 9.2 switch 108
- 9.3 ifelse 109
- 9.4 Compound Tests 111
- 9.5 Conclusion 112

10 Loops, the Un-R Way to Iterate 113

- 10.1 for Loops 113
- 10.2 while Loops 115

- 10.3 Controlling Loops 115
- 10.4 Conclusion 116

11 Group Manipulation 117

- 11.1 Apply Family 117
- 11.2 aggregate 120
- 11.3 plyr 124
- 11.4 data.table 129
- 11.5 Conclusion 139

12 Data Reshaping 141

- 12.1 cbind and rbind 141
- 12.2 Joins 142
- 12.3 reshape2 149
- 12.4 Conclusion 153

13 Manipulating Strings 155

- 13.1 paste 155
- 13.2 sprintf 156
- 13.3 Extracting Text 157
- 13.4 Regular Expressions 161
- 13.5 Conclusion 169

14 Probability Distributions 171

- 14.1 Normal Distribution 171
- 14.2 Binomial Distribution 176
- 14.3 Poisson Distribution 182
- 14.4 Other Distributions 185
- 14.5 Conclusion 186

15 Basic Statistics 187

- 15.1 Summary Statistics 187
- 15.2 Correlation and Covariance 191
- 15.3 T-Tests 200
- 15.4 ANOVA 207
- 15.5 Conclusion 210

1	6	П	near	M	aha	le	211
- 4	•		110-7511	100	oue:	15	

- 16.1 Simple Linear Regression 211
- 16.2 Multiple Regression 216
- 16.3 Conclusion 232

17 Generalized Linear Models 233

- 17.1 Logistic Regression 233
- 17.2 Poisson Regression 237
- 17.3 Other Generalized Linear Models 240
- 17.4 Survival Analysis 240
- 17.5 Conclusion 245

18 Model Diagnostics 247

- 18.1 Residuals 247
- 18.2 Comparing Models 253
- 18.3 Cross-Validation 257
- 18.4 Bootstrap 262
- 18.5 Stepwise Variable Selection 265
- 18.6 Conclusion 269

19 Regularization and Shrinkage 271

- 19.1 Elastic Net 271
- 19.2 Bayesian Shrinkage 290
- 19.3 Conclusion 295

20 Nonlinear Models 297

- 20.1 Nonlinear Least Squares 297
- 20.2 Splines 300
- 20.3 Generalized Additive Models 304
- 20.4 Decision Trees 310
- 20.5 Random Forests 312
- 20.6 Conclusion 313

21 Time Series and Autocorrelation 315

- 21.1 Autoregressive Moving Average 315
- 21.2 VAR 322

21.3 GARCH 327 21.4 Conclusion 336

22 Clustering 337

- 22.1 K-means 337
- 22.2 PAM 345
- 22.3 Hierarchical Clustering 352
- 22.4 Conclusion 357

23 Reproducibility, Reports and Slide Shows

- with knitr 359
- 23.1 Installing a MEX Program 359
- 23.2 ATFX Primer 360
- 23.3 Using knitr with ATEX 362
- 23.4 Markdown Tips 367
- 23.5 Using knitr and Markdown 368
- 23.6 pandoc 369
- 23.7 Conclusion 371

24 Building R Packages 373

- 24.1 Folder Structure 373
- 24.2 Package Files 373
- 24.3 Package Documentation 380
- 24.4 Checking, Building and Installing 383
- 24.5 Submitting to CRAN 384
- 24.6 C++ Code 384
- 24.7 Conclusion 390

A Real-Life Resources 391

- A.1 Meetups 391
- A.2 Stackoverflow 392
- A.3 Twitter 393
- A.4 Conferences 393
- A.5 Web Sites 393
- A.6 Documents 394
- A.7 Books 394
- A.8 Conclusion 394

B Glossary 395

List of Figures 409

List of Tables 417

General Index 419

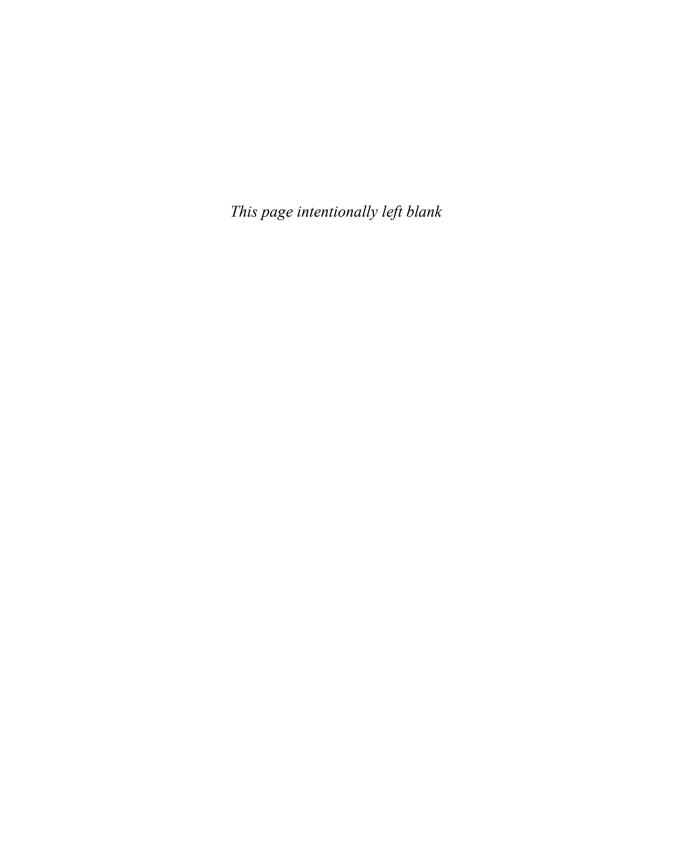
Index of Functions 427

Index of Packages 431

Index of People 433

Data Index 435

Foreword


R has had tremendous growth in popularity over the last three years. Based on that, you'd think that it was a new, up-and-coming language. But surprisingly, R has been around since 1993. Why the sudden uptick in popularity? The somewhat obvious answer seems to be the emergence of data science as a career and a field of study. But the underpinnings of data science have been around for many decades. Statistics, linear algebra, operations research, artificial intelligence, and machine learning all contribute parts to the tools that a modern data scientist uses. R, more than most languages, has been built to make most of these tools only a single function call away.

That's why I'm very excited to have this book as one of the first in the Addison-Wesley Data and Analytics Series. R is indispensable for many data science tasks. Many algorithms useful for prediction and analysis can be accessed through only a few lines of code, which makes it a great fit for solving modern data challenges. Data science as a field isn't just about math and statistics, and it isn't just about programming and infrastructure. This book provides a well-balanced introduction to the power and expressiveness of R and is aimed at a general audience.

I can't think of a better author to provide an introduction to R than Jared Lander. Jared and I first met through the New York City machine learning community in late 2009. Back then, the New York City data community was small enough to fit in a single conference room, and many of the other data meetups had yet to be formed. Over the last four years, Jared has been at the forefront of the emerging data science profession.

Through running the Open Statistical Programming Meetup, speaking at events, and teaching a course at Columbia on R, Jared has helped grow the community by educating programmers, data scientists, journalists, and statisticians alike. But Jared's expertise isn't limited to teaching. As an everyday practitioner, he puts these tools to use while consulting for clients big and small.

This book provides an introduction both to programming in R and to the various statistical methods and tools an everyday R programmer uses. Examples use publicly available datasets that Jared has helpfully cleaned and made accessible through his Web site. By using real data and setting up interesting problems, this book stays engaging to the end.

Preface

With the increasing prevalence of data in our daily lives, new and better tools are needed to analyze the deluge. Traditionally there have been two ends of the spectrum: lightweight, individual analysis using tools like Excel or SPSS and heavy duty, high-performance analysis built with C++ and the like. With the increasing strength of personal computers grew a middle ground that was both interactive and robust. Analysis done by an individual on his or her own computer in an exploratory fashion could quickly be transformed into something destined for a server, underpinning advanced business processes. This area is the domain of R, Python, and other scripted languages.

R, invented by Robert Gentleman and Ross Ihaka of the University of Auckland in 1993, grew out of S, which was invented by John Chambers at Bell Labs. It is a high-level language that was originally intended to be run interactively where the user runs a command, gets a result, and then runs another command. It has since evolved into a language that can also be embedded in systems and tackle complex problems.

In addition to transforming and analyzing data, R can produce amazing graphics and reports with ease. It is now being used as a full stack for data analysis, extracting and transforming data, fitting models, drawing inferences and making predictions, plotting and reporting results.

R's popularity has skyrocketed since the late 2000s, as it has stepped out of academia and into banking, marketing, pharmaceuticals, politics, genomics and many other fields. Its new users are often shifting from low-level, compiled languages like C++, other statistical packages such as SAS or SPSS, and from the 800-pound gorilla, Excel. This time period also saw a rapid surge in the number of add-on packages—libraries of prewritten code that extend R's functionality.

While R can sometimes be intimidating to beginners, especially for those without programming experience, I find that programming analysis, instead of pointing and clicking, soon becomes much easier, more convenient and more reliable. It is my goal to make that learning process easier and quicker.

This book lays out information in a way I wish I were taught when learning R in graduate school. Coming full circle, the content of this book was developed in conjuction with the data science course I teach at Columbia University. It is not meant to cover every minute detail of R, but rather the 20% of functionality needed to accomplish 80% of the work. The content is organized into self-contained chapters as follows.

Chapter 1, Getting R: Where to download R and how to install it. This deals with the varying operating systems and 32-bit versus 64-bit versions. It also gives advice on where to install R.

Chapter 2, The R Environment: An overview of using R, particularly from within RStudio. RStudio projects and Git integration are covered as is customizing and navigating RStudio.

Chapter 3, Packages: How to locate, install and load R packages.

Chapter 4, Basics of R: Using R for math. Variable types such as numeric, character and Date are detailed as are vectors. There is a brief introduction to calling functions and finding documentation on functions.

Chapter 5, Advanced Data Structures: The most powerful and commonly used data structure, data.frames, along with matrices and lists, are introduced.

Chapter 6, Reading Data into R: Before data can be analyzed it must be read into R. There are numerous ways to ingest data, including reading from CSVs and databases.

Chapter 7, Statistical Graphics: Graphics are a crucial part of preliminary data analysis and communicating results. R can make beautiful plots using its powerful plotting utilities. Base graphics and ggplot2 are introduced and detailed here.

Chapter 8, Writing R Functions: Repeatable analysis is often made easier with user-defined functions. The structure, arguments and return rules are discussed.

Chapter 9, Control Statements: Controlling the flow of programs using if, ifelse and complex checks.

Chapter 10, Loops, the Un-R Way to Iterate: Iterating using for and while loops. While these are generally discouraged they are important to know.

Chapter 11, Group Manipulation: A better alternative to loops, vectorization does not quite iterate through data so much as operate on all elements at once. This is more efficient and is primarily performed with the apply functions and plyr package.

Chapter 12, Data Reshaping: Combining multiple datasets, whether by stacking or joining, is commonly necessary as is changing the shape of data. The plyr and reshape2 packages offer good functions for accomplishing this in addition to base tools such as rbind, cbind and merge.

Chapter 13, Manipulating Strings: Most people do not associate character data with statistics but it is an important form of data. R provides numerous facilities for working with strings, including combining them and extracting information from within. Regular expressions are also detailed.

Chapter 14, Probability Distributions: A thorough look at the normal, binomial and Poisson distributions. The formulas and functions for many distributions are noted.

Chapter 15, Basic Statistics: These are the first statistics most people are taught, such as mean, standard deviation and t-tests.

Chapter 16, Linear Models: The most powerful and common tool in statistics, linear models are extensively detailed.

Chapter 17, Generalized Linear Models: Linear models are extended to include logistic and Poisson regression. Survival analysis is also covered.

Chapter 18, Model Diagnostics: Determining the quality of models and variable selection using residuals, AIC, cross-validation, the bootstrap and stepwise variable selection.

Chapter 19, Regularization and Shrinkage: Preventing overfitting using the Elastic Net and Bayesian methods.

Chapter 20, Nonlinear Models: When linear models are inappropriate, nonlinear models are a good solution. Nonlinear least squares, splines, generalized additive models, decision trees and random forests are discussed.

Chapter 21, Time Series and Autocorrelation: Methods for the analysis of univariate and multivariate time series data.

Chapter 22, Clustering: Clustering, the grouping of data, is accomplished by various methods such as K-means and hierarchical clustering.

Chapter 23, Reproducibility, Reports and Slide Shows with knitr: Generating reports, slide shows and Web pages from within R is made easy with knitr, Land Markdown.

Chapter 24, Building R Packages: R packages are great for portable, reusable code. Building these packages has been made incredibly easy with the advent of devtools and Rcpp.

Appendix A, Real-Life Resources: A listing of our favorite resources for learning more about R and interacting with the community.

Appendix B, Glossary: A glossary of terms used throughout this book.

A good deal of the text in this book is either R code or the results of running code. Code and results are most often in a separate block of text and set in a distinctive font, as shown in the following example. The different parts of code also have different colors. Lines of code start with >, and if code is continued from one line to another the continued line begins with +.

```
> # this is a comment
>
> # now basic math
> 10 * 10
[1] 100
>
> # calling a function
> sqrt(4)
[1] 2
```

Certain Kindle devices do not display color so the digital edition of this book will be viewed in greyscale on those devices.

There are occasions where code is shown inline and looks like sgrt (4).

In the few places where math is necessary, the equations are indented from the margin and are numbered

$$e^{i\pi} + 1 = 0 \tag{1}$$

Preface

Within equations, normal variables appear as italic text (x), vectors are bold lowercase letters (x) and matrices are bold uppercase letters (x). Greek letters, such as α and β , follow the same convention.

Function names will be written as join and package names as plyr. Objects generated in code that are referenced in text are written as object1.

Learning R is a gratifying experience that makes life so much easier for so many tasks. I hope you enjoy learning with me.

Acknowledgments

o start, I must thank my mother, Gail Lander, for encouraging me to become a math major. Without that I would never have followed the path that led me to statistics and data science. In a similar vein, I have to thank my father, Howard Lander, for paying all those tuition bills. He has been a valuable source of advice and guidance throughout my life and someone I have aspired to emulate in many ways. While they both insist they do not understand what I do, they love that I do it and have helped me all along the way. Staying with family, I should thank my sister and brother-in-law, Aimee and Eric Schechterman, for letting me teach math to Noah, their five-year-old son.

There are many teachers who have helped shape me over the years. The first is Rochelle Lecke, who tutored me in middle school math even when my teacher told me I did not have worthwhile math skills.

Then there is Beth Edmondson, my precalc teacher at Princeton Day School. After I wasted the first half of high school as a mediocre student, she told me I had "some nerve signing up for next year's AP Calc" given my grades. She agreed to let me take AP Calc if I went from a C to an A+ in her class, never thinking I stood a chance. Three months later, she was in shock as I not only earned the A+, but turned around my entire academic career. She changed my life and without her, I do not know where I would be today. I am forever grateful that she was my teacher.

For the first two years at Muhlenberg College, I was determined to be a business and communications major, but took math classes because they came naturally to me. My professors, Dr. Penny Dunham, Dr. Bill Dunham, and Dr. Linda McGuire, all convinced me to become a math major, a decision that has greatly shaped my life. Dr. Greg Cicconetti gave me my first glimpse of rigorous statistics, my first research opportunity and planted the idea in my head that I should go to grad school for statistics.

While earning my M.A. at Columbia University, I was surrounded by brilliant minds in statistics and programming. Dr. David Madigan opened my eyes to modern machine learning, and Dr. Bodhi Sen got me thinking about statistical programming. I had the privilege to do research with Dr. Andrew Gelman, whose insights have been immeasurably important to me. Dr. Richard Garfield showed me how to use statistics to help people in disaster and war zones when he sent me on my first assignment to Myanmar. His advice and friendship over the years have been dear to me. Dr. Jingchen Liu

allowed and encouraged me to write my thesis on New York City pizza, which has brought me an inordinate amount of attention.¹

While at Columbia, I also met my good friend—and one time TA— Dr. Ivor Cribben who filled in so many gaps in my knowledge. Through him, I met Dr. Rachel Schutt, a source of great advice, and who I am now honored to teach alongside at Columbia.

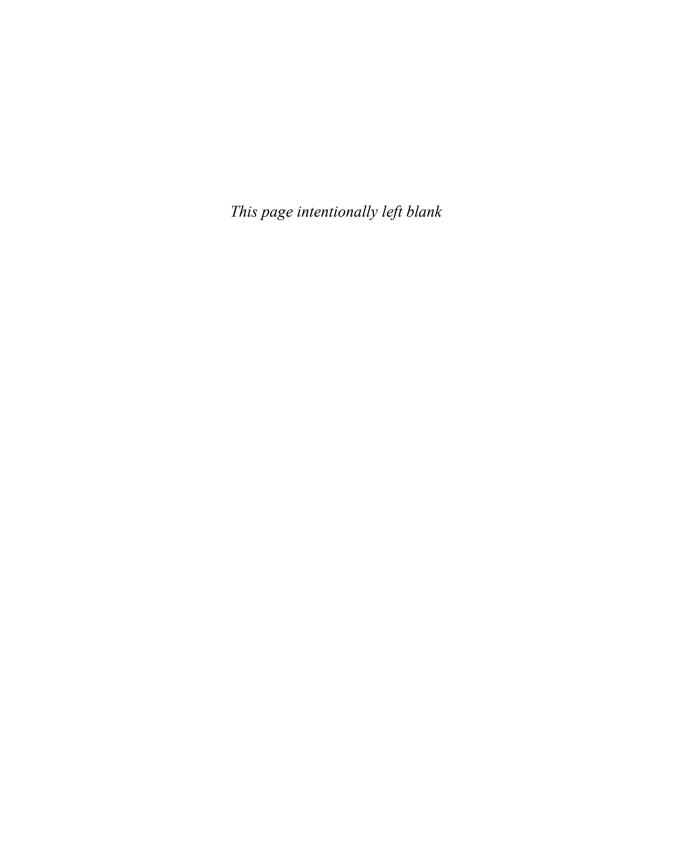
Grad school might never have happened without the encouragement and support of Shanna Lee. She helped maintain my sanity while I was incredibly overcommited to two jobs, classes and Columbia's hockey team. I am not sure I would have made it through without her

Steve Czetty gave me my first job in analytics at Sky IT Group and taught me about databases, while letting me experiment with off-the-wall programming. This sparked my interest in statistics and data. Joe DeSiena, Philip du Plessis, and Ed Bobrin at the Bardess Group are some of the finest people I have ever had the pleasure to work with, and I am proud to be working with them to this day. Mike Minelli, Rich Kittler, Mark Barry, David Smith, Joseph Rickert, Dr. Norman Nie, James Peruvankal, Neera Talbert and Dave Rich at Revolution Analytics let me do one of the best jobs I could possibly imagine: explaining to people in business why they should be using R. Kirk Mettler, Richard Schultz, Dr. Bryan Lewis and Jim Winfield at Big Computing encouraged me to have fun, tackling interesting problems in R. Vincent Saulys, John Weir, and Dr. Saar Golde at Goldman Sachs made my time there both enjoyable and educational.

Throughout the course of writing this book, many people helped me with the process. First and foremost is Yin Cheung, who saw all the stress I constantly felt and supported me through many ruined nights and days.

My editor, Debra Williams, knew just how to encourage me and her guiding hand has been invaluable. Paul Dix, the series editor and a good friend, was the person who suggested I write this book, so none of this would have happened without him. Thanks to Caroline Senay and Andrea Fox for being great copy editors. Without them, this book would not be nearly as well put together. Robert Mauriello's technical review was incredibly useful in honing the book's presentation.

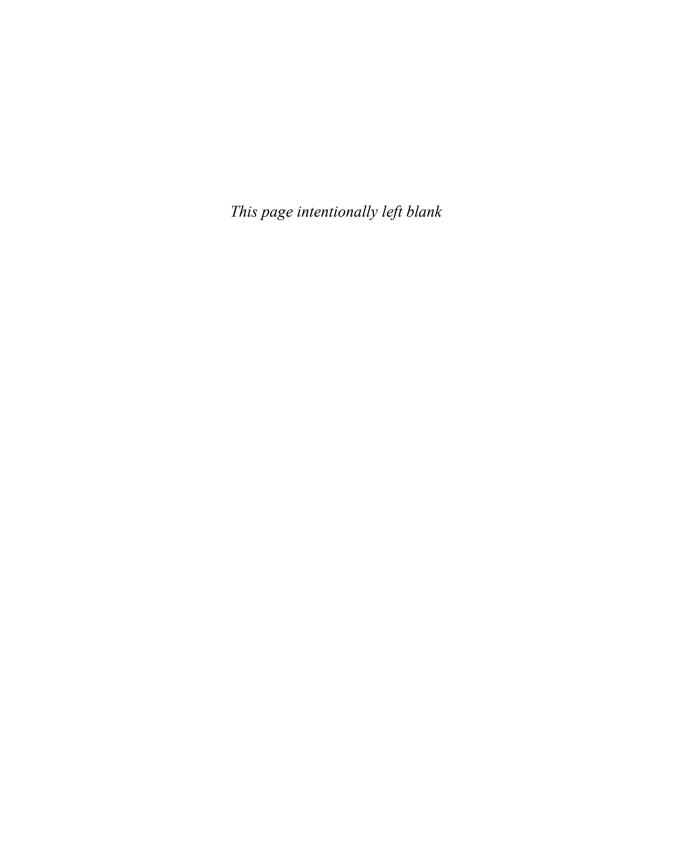
The folks at RStudio, particularly JJ Allaire and Josh Paulson, make an amazing product, which made the writing process far easier than it would have been otherwise. Yihui Xie, the author of the knitr package, provided numerous feature changes that I needed to write this book. His software, and his speed at implementing my requests, is greatly appreciated.

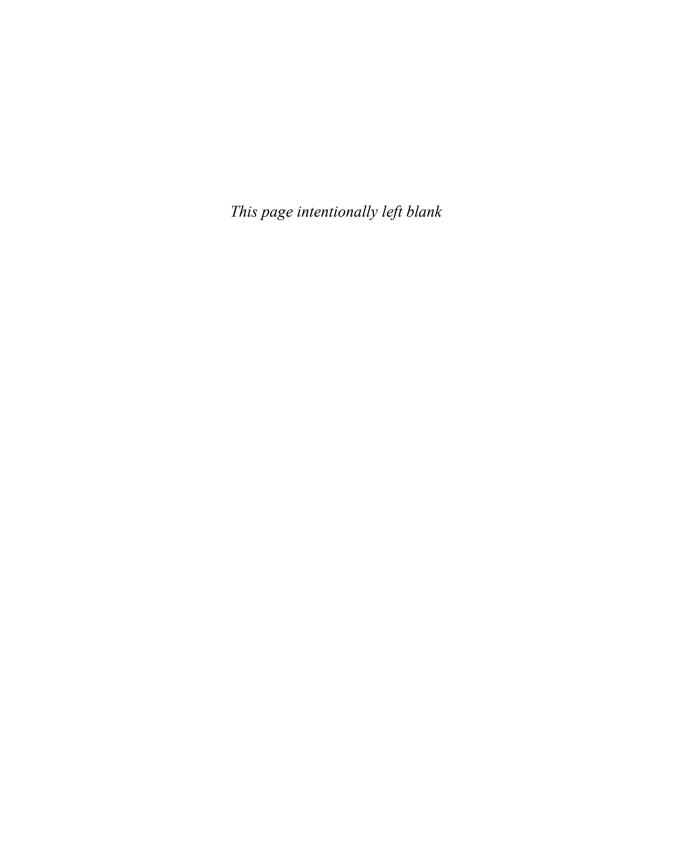

Numerous people have provided valuable feedback as I produced this book, including Chris Bethel, Dr. Dirk Eddelbuettel, Dr. Ramnath Vaidvanathan, Dr. Eran Bellin,

^{1.} http://slice.seriouseats.com/archives/2010/03/the-moneyball-of-pizza-statistician-uses-statistics-to-find-nyc-best-pizza.html

Avi Fisher, Brian Ezra, Paul Puglia, Nicholas Galasinao, Aaron Schumaker, Adam Hogan, Jeffrey Arnold, and John Houston.

Last fall was my first time teaching, and I am thankful to the students from the Fall 2012 Introduction to Data Science class at Columbia University for being the guinea pigs for the material that ultimately ended up in this book.


Thank you to everyone who helped along the way.



About the Author

Jared P. Lander is the founder and CEO of Lander Analytics, a statistical consulting firm based in New York City, the organizer of the New York Open Statistical Programming Meetup, and an adjunct professor of statistics at Columbia University. He is also a tour guide for Scott's Pizza Tours and an advisor to Brewla Bars, a gourmet ice pop start-up. With an M.A. from Columbia University in statistics and a B.A. from Muhlenberg College in mathematics, he has experience in both academic research and industry. His work for both large and small organizations spans politics, tech start-ups, fund-raising, music, finance, healthcare and humanitarian relief efforts.

He specializes in data management, multilevel models, machine learning, generalized linear models, visualization, data management and statistical computing.

Chapter 12

Data Reshaping

As noted in Chapter 11, manipulating the data takes a great deal of effort before serious analysis can begin. In this chapter we will consider when the data needs to be rearranged from column oriented to row oriented (or the opposite) and when the data are in multiple, separate sets and need to be combined into one.

There are base functions to accomplish these tasks but we will focus on those in plyr, reshape2 and data.table.

12.1 cbind and rbind

The simplest case is when we have two datasets with either identical columns (both the number of and names) or the same number of rows. In this case, either rbind or cbind work great.

As a first trivial example, we create two simple data.frames by combining a few vectors with cbind, and then stack them using rbind.

Both cbind and rbind can take multiple arguments to combine an arbitrary number of objects. Note that it is possible to assign new column names to vectors in cbind.

12.2 Joins

Data do not always come so nicely aligned for combining using cbind, so they need to be joined together using a common key. This concept should be familiar to SQL users. Joins in R are not as flexible as SQL joins, but are still an essential operation in the data analysis process.

The three most commonly used functions for joins are merge in base R, join in plyr and the merging functionality in data.table. Each has pros and cons with some pros outweighing their respective cons.

To illustrate these functions I have prepared data originally made available as part of the USAID Open Government initiative. The data have been chopped into eight separate files so that they can be joined together. They are all available in a zip file at http://jaredlander.com/data/US_Foreign_Aid.zip. These should be downloaded and unzipped to a folder on our computer. This can be done a number of ways (including using a mouse!) but we show how to download and unzip using R.

```
> download.file(url="http://jaredlander.com/data/US_Foreign_Aid.zip",
+ destfile="data/ForeignAid.zip")
> unzip("data/ForeignAid.zip", exdir="data")
```

To load all of these files programmatically, we use a for loop as seen in Section 10.1. We get a list of the files using dir, and then loop through that list assigning each dataset to a name specified using assign.

^{1.} More information about the data is available at http://gbk.eads.usaidallnet.gov/.

12.2.1 merge

R comes with a built-in function, called merge, to merge two data.frames.

```
> Aid90s00s <- merge(x=Aid 90s, y=Aid 00s,
                      by.x=c("Country.Name", "Program.Name"),
                      by.y=c("Country.Name", "Program.Name"))
> head(Aid90s00s)
  Country.Name
                                                       Program.Name
1 Afghanistan
                                         Child Survival and Health
2 Afghanistan
                        Department of Defense Security Assistance
3 Afghanistan
                                            Development Assistance
4 Afghanistan Economic Support Fund/Security Support Assistance
5 Afghanistan
                                                 Food For Education
6 Afghanistan
                                  Global Health and Child Survival
  FY1990 FY1991 FY1992
                          FY1993 FY1994 FY1995 FY1996 FY1997 FY1998
1
      NA
             NA
                     NA
                              NA
                                       NA
                                              NA
                                                      NA
                                                             NA
                                                                     NA
2
      NA
             NA
                     NA
                              NA
                                       NA
                                              NA
                                                      NA
                                                             NA
                                                                     NA
3
      NΑ
             NΑ
                     NΑ
                              NΑ
                                       NΑ
                                              NΑ
                                                      NΑ
                                                             NΑ
                                                                     NΑ
4
      NA
             NA
                     NA 14178135 2769948
                                              NA
                                                      NA
                                                             NA
                                                                     NA
5
      NA
             NA
                     NA
                              NA
                                       NA
                                              NA
                                                      NA
                                                             NA
                                                                     NA
             NA
                                       NA
                                              NA
                                                             NA
      NA
                     NA
                              NA
                                                                     NA
  FY1999 FY2000
                 FY2001
                           FY2002
                                      FY2003
                                                         FY2004
                                                                     FY2005
1
                         2586555
                                    56501189
                                                       40215304
      NA
             NA
                      NA
                                                                  39817970
2
                          2964313
                                                       45635526
                                                                 151334908
      NA
             NA
                      NA
                                          NA
3
             NA 4110478
                          8762080
                                    54538965
                                                      180539337
                                                                 193598227
      NA
4
      NA
                   61144 31827014 341306822
                                                     1025522037 1157530168
             NA
5
                                     3957312
                                                        2610006
                                                                   3254408
      NA
             NA
                      NA
                               NA
6
      NA
                      NA
                               NA
                                          NA
                                                             NA
                                                                         NA
      FY2006
                 FY2007
                             FY2008
                                         FY2009
1
    40856382
               72527069
                           28397435
                                             NA
   230501318
             214505892
                          495539084
                                      552524990
   212648440
             173134034
                          150529862
                                        3675202
4 1357750249 1266653993 1400237791 1418688520
      386891
5
                      NA
                                 NΑ
6
          NA
                      NA
                           63064912
                                        1764252
```

The by.x specifies the key column(s) in the left data.frame and by.y does the same for the right data.frame. The ability to specify different column names for each data.frame is the most useful feature of merge. The biggest drawback, however, is that merge can be much slower than the alternatives.

12.2.2 plyr join

Returning to Hadley Wickham's plyr package, we see it includes a join function, which works similarly to merge but is much faster. The biggest drawback, though, is that the key column(s) in each table must have the same name. We use the same data used previously to illustrate.

```
> require(plyr)
> Aid90s00sJoin <- join(x = Aid_90s, y = Aid_00s, by = c("Country.Name",
      "Program.Name"))
> head (Aid90s00sJoin)
  Country.Name
                                                         Program.Name
1
  Afghanistan
                                          Child Survival and Health
2
  Afghanistan
                         Department of Defense Security Assistance
  Afghanistan
                                             Development Assistance
  Afghanistan Economic Support Fund/Security Support Assistance
5
  Afghanistan
                                                  Food For Education
   Afghanistan
                                   Global Health and Child Survival
  FY1990 FY1991 FY1992
                           FY1993
                                    FY1994 FY1995 FY1996 FY1997 FY1998
1
      NA
              NA
                     NA
                               NA
                                        NA
                                                NA
                                                       NA
                                                               NA
                                                                       MΑ
2
      NA
                     NA
                               NA
                                        NA
                                                NA
                                                                       NA
              NΑ
                                                       MA
                                                               MA
3
      NA
                               NA
                                        NA
                                                NA
              NΑ
                     NA
                                                       NA
                                                               NA
                                                                       NA
4
      NA
                     NA 14178135 2769948
                                                               NA
                                                                       NA
                                                       NΑ
5
      NA
                     NA
                               NA
                                        NA
                                                NA
                                                       NA
                                                               NA
                                                                       NA
              MA
6
      NA
                               NA
                                        NA
                                                NA
                                                                       NA
              MA
                     MA
                                                       NΑ
                                                               NA
  FY1999 FY2000
                  FY2001
                            FY2002
                                       FY2003
                                                   FY2004
                                                               FY2005
1
              NΑ
                           2586555
                                     56501189
                                                 40215304
                                                             39817970
                           2964313
2
      NΑ
              NΑ
                       NΑ
                                           MΑ
                                                 45635526
                                                            151334908
3
      NA
              NA 4110478
                           8762080
                                     54538965
                                                180539337
                                                            193598227
4
      NA
              NA
                   61144 31827014 341306822 1025522037 1157530168
5
                                      3957312
                                                  2610006
                                                              3254408
      NA
              NA
                       NA
                                NA
6
                                                       NA
                                                                   NA
      NA
                       NA
                                NA
                                           NA
              NA
      FY2006
                                          FY2009
                  FY2007
                              FY2008
                72527069
1
    40856382
                            28397435
   230501318
               214505892
                           495539084
                                       552524990
   212648440
               173134034
                           150529862
                                         3675202
4
 1357750249 1266653993 1400237791 1418688520
5
      386891
                       NA
                                   NA
6
                            63064912
                      NA
                                         1764252
```

join has an argument for specifying a left, right, inner or full (outer) join.

We have eight data.frames containing foreign assistance data that we would like to combine into one data.frame without hand coding each join. The best way to do this is to put all the data.frames into a list, and then successively join them together using Reduce.

```
> # first figure out the names of the data.frames
> frameNames <- str_sub(string = theFiles, start = 12, end = 18)
> # build an empty list
> frameList <- vector("list", length(frameNames))
> names(frameList) <- frameNames
> # add each data.frame into the list
> for (a in frameNames)
+ {
    frameList[[a]] <- eval(parse(text = a))
+ }</pre>
```

A lot happened in that section of code, so let's go over it carefully. First we reconstructed the names of the data.frames using str_sub from Hadley Wickham's stringr package, which is shown in more detail in Chapter 13. Then we built an empty list with as many elements as there are data.frames, in this case eight, using vector and assigning its mode to "list." We then set appropriate names to the list.

Now that the list is built and named, we loop through it, assigning to each element the appropriate data.frame. The problem is that we have the names of the data.frames as characters but the <- operator requires a variable, not a character. So we parse and evaluate the character, which realizes the actual variable. Inspecting, we see that the list does indeed contain the appropriate data.frames.

> head(frameList[[1]])

```
Country.Name
                                                      Program.Name
1 Afghanistan
                                         Child Survival and Health
 Afghanistan
                        Department of Defense Security Assistance
3 Afghanistan
                                            Development Assistance
4 Afghanistan Economic Support Fund/Security Support Assistance
 Afghanistan
                                                Food For Education
  Afghanistan
                                 Global Health and Child Survival
  FY2000
          FY2001
                              FY2003
                                                     FY2005
                                                                 FY2006
                   FY2002
                                          FY2004
1
                  2586555
                            56501189
                                        40215304
                                                   39817970
                                                               40856382
      NA
              NA
2
      NA
                  2964313
                                        45635526
                                                   45635526 230501318
              NA
                                  NA
3
      NA 4110478
                   8762080
                            54538965
                                      180539337
                                                  193598227
                                                              212648440
           61144 31827014 341306822 1025522037 1157530168 1357750249
4
      NA
5
              NΑ
                             3957312
                                         2610006
                                                    3254408
                                                                 386891
      NA
6
      NA
              NA
                        NA
                                              NA
                                                         NA
                                                                     NA
                                  NA
```

```
FY2007 FY2008 FY2009
1 72527069 28397435 NA
2 214505892 495539084 552524990
3 173134034 150529862 3675202
4 1266653993 1400237791 1418688520
5 NA NA NA
6 NA 63064912 1764252
```

> head(frameList[["Aid_00s"]])

Country.Name					Program.Name						
1	1 Afghanistan						Child Survival and Health				
2	Afghar	nista	n	I	Depart	ment o	f Defense	Security	Ass	istance	
3	Afghar	nista	n				Development Assistance				
4	Afghar	nista	n Ed	conomic	Suppo	rt Fun	d/Security	Support	Ass	istance	
5	Afghar	nista	n					Food Fo	r Edı	ucation	
6	Afghar	nista	n			Glo	bal Health	and Chi	ld Sı	urvival	
	FY2000	FY2	001	FY200)2	FY2003	FY200	4 FY	2005	FY2006	
1	NA		NA	258655	55 56	501189	4021530	3981	7970	40856382	
2	NA		NA	296431	L3	NA	4563552	6 15133	4908	230501318	
3	NA	4110	478	876208	30 54	538965	18053933	7 19359	8227	212648440	
4	NA	61	144	3182701	14 341	306822	102552203	7 115753	0168	1357750249	
5	NA		NA	1	JA 3	957312	261000	6 325	4408	386891	
6	NA		NA	1	JA	NA	D	ΙA	NA	NA	
	FY2	2007		FY2008	F	Y2009					
1	72527	069	28	3397435		NA					
2	214505	892	495	5539084	5525	24990					
3	173134	034	150	0529862	36	75202					
4	1266653	1993	1400	0237791	14186	88520					
5		NA		NA		NA					
6	6 NA 63064912				17	64252					

> head(frameList[[5]])

	Country.Name Program.Name										
1	Afghar	nistan	stan Child Survival and Health								
2	Afghar	nistan	Department of Defense Security Assistance								
3	Afghanistan Development Assistance										
4	Afghanistan Economic Support Fund/Security Support Assistance										
5	Afghanistan Food For Education										
6	6 Afghanistan Global Health and Child Survival							ival			
	FY1960	FY1961	FY1962	FY1963	FY1964	FY1965	FY1966	FY1967	FY1968		
1	NA	NA	NA	NA	NA	NA	NA	NA	NA		
2	NA	NA	NA	NA	NA	NA	NA	NA	NA		
3	NA	NA	NA	NA	NA	NA	NA	NA	NA		

```
4
      NA
              NA 181177853
                                 NA
                                         NA
                                                 NA
                                                         NA
                                                                 NA
                                                                         NA
5
      NA
                                                         NA
              NA
                         NA
                                 NA
                                         NA
                                                 NA
                                                                 NA
                                                                         NA
6
      NA
                         NA
                                 NA
              NΑ
                                         NA
                                                 NA
                                                         NA
                                                                 NA
                                                                        NA
  FY1969
1
      NA
2
      NA
3
      NA
4
      NA
5
      NA
6
      NA
> head(frameList[["Aid_60s"]])
  Country.Name
                                                          Program.Name
   Afghanistan
1
                                           Child Survival and Health
2
  Afghanistan
                         Department of Defense Security Assistance
3 Afghanistan
                                               Development Assistance
  Afghanistan Economic Support Fund/Security Support Assistance
5 Afghanistan
                                                   Food For Education
  Afghanistan
                                   Global Health and Child Survival
  FY1960 FY1961
                     FY1962 FY1963 FY1964 FY1965 FY1966 FY1967 FY1968
1
      NA
              NΑ
                         NA
                                 NA
                                         NA
                                                 NA
                                                         NA
                                                                 NA
                                                                         NA
2
      NΑ
              NΑ
                         NA
                                 NA
                                         NA
                                                 NA
                                                         NA
                                                                 NA
                                                                         NΑ
3
      NA
              NA
                         NA
                                 NA
                                         NA
                                                 NA
                                                         NA
                                                                 NA
                                                                        NA
4
      NA
              NA
                 181177853
                                 NA
                                         NA
                                                 NA
                                                         NA
                                                                 NA
                                                                         NA
5
      NA
                         NA
                                 NA
                                         NA
                                                         NA
              NA
                                                 NA
                                                                 NA
                                                                        NA
6
      NA
              NA
                         NA
                                 NA
                                         NA
                                                 NA
                                                         NA
                                                                 NA
                                                                         NA
  FY1969
1
      NA
2
      NA
3
      NA
4
      NA
5
      NA
6
      NA
```

Having all the data.frames in a list allows us to iterate through the list, joining all the elements together (or applying any function to the elements iteratively). Rather than using a loop, we use the Reduce function to speed up the operation.

```
> allAid <- Reduce(function(...)
+ {
+    join(..., by = c("Country.Name", "Program.Name"))
+ }, frameList)
> dim(allAid)
[1] 2453 67
```

2453 79545100

```
> require(useful)
> corner(allAid, c = 15)
  Country.Name
                                                       Program.Name
  Afghanistan
                                         Child Survival and Health
1
                        Department of Defense Security Assistance
  Afghanistan
3
  Afghanistan
                                             Development Assistance
  Afghanistan Economic Support Fund/Security Support Assistance
  Afghanistan
                                                 Food For Education
  FY2000
          FY2001
                    FY2002
                               FY2003
                                          FY2004
                                                      FY2005
                                                                  FY2006
1
      NΑ
              NΑ
                   2586555
                            56501189
                                        40215304
                                                    39817970
                                                                40856382
2
      NA
              NA
                   2964313
                                   NA
                                        45635526
                                                  151334908
                                                               230501318
3
      NA 4110478
                   8762080
                            54538965
                                       180539337
                                                   193598227
4
      NA
           61144 31827014 341306822 1025522037 1157530168 1357750249
5
                              3957312
                                         2610006
                                                     3254408
                                                                  386891
              NA
      NA
                        NΑ
                             FY2009
                                         FY2010
                                                  FY1946 FY1947
      FY2007
                  FY2008
1
    72527069
                28397435
                                  NA
                                             NA
                                                      NA
                                                              MΔ
2
  214505892
              495539084
                          552524990
                                      316514796
                                                      NA
                                                              NA
   173134034
              150529862
                             3675202
                                                              NA
                                                      NA
 1266653993 1400237791 1418688520 2797488331
4
                                                      NA
                                                              NA
          NA
                      NA
                                  NA
                                             NA
                                                      NA
                                                              NA
> bottomleft(allAid, c = 15)
     Country.Name
                              Program.Name
                                            FY2000
                                                     FY2001
                                                               FY2002
2449
         Zimbabwe Other State Assistance 1341952
                                                     322842
                                                                   NA
2450
         Zimbabwe Other USAID Assistance 3033599 8464897
                                                              6624408
2451
         Zimbabwe
                               Peace Corps 2140530 1150732
                                                               407834
2452
         Zimbabwe
                                   Title I
                                                 NA
                                                         NA
                                                         NA 31019776
2453
         Zimbabwe
                                  Title II
                                                 NA
       FY2003
                 FY2004
                          FY2005
                                   FY2006
                                              FY2007
                                                        FY2008
                                                                   FY2009
2449
                 318655
                            44553
                                   883546
                                             1164632
                                                       2455592
                                                                  2193057
           NA
2450 11580999 12805688 10091759 4567577
                                           10627613
                                                      11466426
                                                                 41940500
2451
           NA
                     NA
                               NA
                                       NA
                                                  NA
                                                             NA
                                                                       NA
2452
           NA
                     NA
                               NA
                                       NA
                                                  NA
                                                             NA
                                                                       NA
2453
           NA
                     NA
                               NA
                                  277468 100053600 180000717 174572685
       FY2010 FY1946 FY1947
2449
     1605765
                   NA
                          NA
2450 30011970
                   NA
                          NA
2451
           NA
                   NA
                          NA
2452
                   NA
                          NA
```

Reduce can be a difficult function to grasp, so we illustrate it with a simple example. Let's say we have a vector of the first ten integers, 1:10, and want to sum them (forget for a moment that sum(1:10) will work perfectly). We can call Reduce(sum, 1:10),

NA

NA

which will first add 1 and 2. It will then add 3 to that result, then 4 to that result, and so on, resulting in 55.

Likewise, we passed a list to a function that joins its inputs, which in this case was simply ..., meaning that anything could be passed. Using ... is an advanced trick of R programming that can be difficult to get right. Reduce passed the first two data.frames in the list, which were then joined. That result was then joined to the next data.frame and so on until they were all joined together.

12.2.3 data.table merge

Like many other operations in data.table, joining data requires a different syntax, and possibly a different way of thinking. To start, we convert two of our foreign aid datasets' data.frames into data.tables.

```
> require(data.table)
> dt90 <- data.table(Aid_90s, key = c("Country.Name", "Program.Name"))
> dt00 <- data.table(Aid_00s, key = c("Country.Name", "Program.Name"))</pre>
```

Then, doing the join is a simple operation. Note that the join requires specifying the keys for the data.tables, which we did during their creation.

```
> dt0090 <- dt90[dt00]
```

In this case dt90 is the left side, dt00 is the right side and a left join was performed.

12.3 reshape2

The next most common munging need is either melting data (going from column orientation to row orientation) or casting data (going from row orientation to column orientation). As with most other procedures in R, there are multiple functions available to accomplish these tasks but we will focus on Hadley Wickham's reshape2 package. (We talk about Wickham a lot because his products have become so fundamental to the R developer's toolbox.)

12.3.1 melt

Looking at the Aid-00s data.frame, we see that each year is stored in its own column. That is, the dollar amount for a given country and program is found in a different column for each year. This is called a cross table, which, while nice for human consumption, is not ideal for graphing with ggplot2 or for some analysis algorithms.

```
Afghanistan
                                           Development Assistance
 Afghanistan Economic Support Fund/Security Support Assistance
 Afghanistan
                                               Food For Education
 Afghanistan
                                 Global Health and Child Survival
 FY2000
         FY2001
                                         FY2004
                   FY2002
                              FY2003
                                                     FY2005
                                                                FY2006
1
      NΑ
              NA
                  2586555
                            56501189
                                       40215304
                                                   39817970
                                                              40856382
2
     NΑ
              NA
                 2964313
                                       45635526 151334908
                                                            230501318
                                  NA
3
     NA 4110478
                  8762080
                            54538965
                                     180539337
                                                  193598227
                                                             212648440
4
     NA
           61144 31827014 341306822 1025522037 1157530168 1357750249
5
     NA
              NA
                       NA
                             3957312
                                        2610006
                                                    3254408
6
                       NA
                                             NA
                                                         NA
                                                                    NA
     NA
              NA
                                  NA
                 FY2008
                             FY2009
      FY2007
1
   72527069
               28397435
                                 NA
2
  214505892
             495539084
                         552524990
3
  173134034 150529862
                            3675202
4 1266653993 1400237791 1418688520
5
          NA
                     NA
                                 NA
6
                            1764252
          NA
               63064912
```

We want it set up so that each row represents a single country-program-year entry with the dollar amount stored in one column. To achieve this we melt the data using melt from reshape2.

```
> require(reshape2)
> melt00 <- melt(Aid_00s, id.vars=c("Country.Name", "Program.Name"),</pre>
                  variable.name="Year", value.name="Dollars")
+
> tail(melt00, 10)
      Country.Name
24521
          7 imbabwe
24522
          Zimbabwe
24523
          Zimbabwe
24524
          Zimbabwe
24525
          Zimbabwe
24526
          Zimbabwe
24527
          Zimbabwe
          Zimbabwe
24528
24529
          Zimbabwe
24530
          Zimbabwe
                                                   Program.Name
24521
                             Migration and Refugee Assistance FY2009
24522
                                             Narcotics Control FY2009
```

```
24523 Nonproliferation, Anti-Terrorism, Demining and Related FY2009
24524
                                  Other Active Grant Programs FY2009
24525
                                       Other Food Aid Programs FY2009
24526
                                        Other State Assistance FY2009
24527
                                        Other USAID Assistance FY2009
24528
                                                   Peace Corps FY2009
24529
                                                       Title I FY2009
24530
                                                       Title II FY2009
        Dollars
24521
        3627384
24522
             NA
24523
             NΑ
24524
       7951032
24525
             NA
24526
        2193057
24527
      41940500
24528
             MΤΔ
24529
24530 174572685
```

The id.vars argument specifies which columns uniquely identify a row.

After some manipulation of the Year column and aggregating, this is now prime for plotting, as shown in Figure 12.1. The plot uses faceting allowing us to quickly see and understand the funding for each program over time.

```
> require(scales)
> # strip the "FY" out of the year column and convert it to numeric
> melt00$Year <- as.numeric(str sub(melt00$Year, start=3, 6))</pre>
> # aggregate the data so we have yearly numbers by program
> meltAgg <- aggregate(Dollars ~ Program.Name + Year, data=melt00,
                       sum, na.rm=TRUE)
> # just keep the first 10 characters of program name
> # then it will fit in the plot
> meltAgg$Program.Name <- str_sub(meltAgg$Program.Name, start=1,</pre>
+
                                   end=10)
>
> ggplot (meltAgg, aes (x=Year, y=Dollars)) +
      geom line(aes(group=Program.Name)) +
      facet_wrap(~ Program.Name) +
+
      scale x continuous(breaks=seg(from=2000, to=2009, by=2)) +
      theme(axis.text.x=element_text(angle=90, vjust=1, hjust=0)) +
      scale y continuous(labels=multiple format(extra=dollar,
                                                 multiple="B"))
```

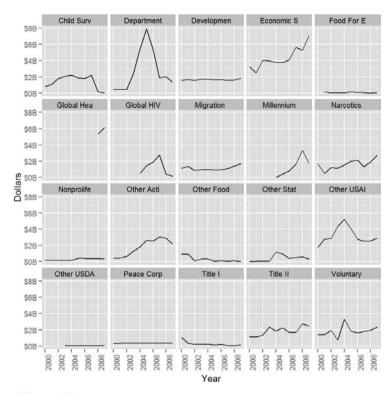
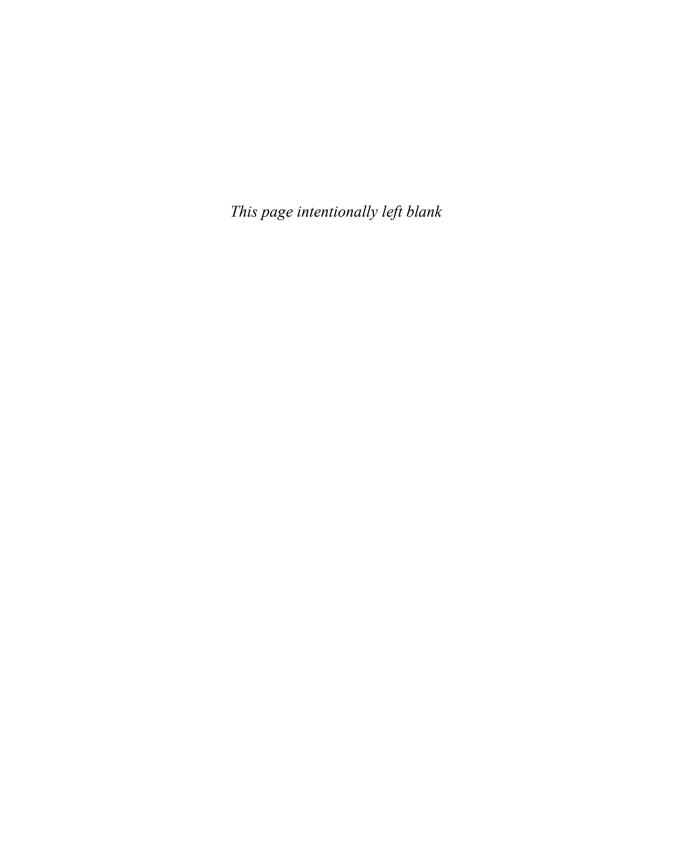


Figure 12.1 Plot of foreign assistance by year for each of the programs.


12.3.2 dcast

Now that we have the foreign aid data melted, we cast it back into the wide format for illustration purposes. The function for this is dcast, and it has trickier arguments than melt. The first is the data to be used, in our case melt00. The second argument is a formula where the left side specifies the columns that should remain columns and the right side specifies the columns that should become row names. The third argument is the column (as a character) that holds the values to be populated into the new columns representing the unique values of the right side of the formula argument.

```
Afghanistan Economic Support Fund/Security Support Assistance
                                                                        NA
5
   Afghanistan
                                                  Food For Education
                                                                        NA
6
  Afghanistan
                                  Global Health and Child Survival
                                                                        NA
     2001
               2002
                          2003
                                      2004
                                                  2005
                                                             2006
1
           2586555
                     56501189
                                 40215304
                                             39817970
                                                         40856382
       NA
2
           2964313
                            NA
                                 45635526
                                            151334908
                                                        230501318
3
  4110478
           8762080
                     54538965
                                180539337
                                            193598227
                                                        212648440
    61144 31827014 341306822 1025522037 1157530168 1357750249
4
5
                                  2610006
                                              3254408
                                                           386891
       NA
                 NA
                      3957312
6
       NA
                 NA
                            NA
                                        NA
                                                   NA
                                                                NA
        2007
                    2008
                                2009
1
    72527069
                28397435
                                  NA
2
   214505892
               495539084
                           552524990
3
   173134034
               150529862
                             3675202
  1266653993 1400237791 1418688520
5
          NA
                      NA
                                  NA
                63064912
6
          NA
                             1764252
```

12.4 Conclusion

Getting the data just right to analyze can be a time-consuming part of our work flow, although it is often inescapable. In this chapter we examined combining multiple datasets into one and changing the orientation from column based (wide) to row based (long). We used plyr, reshape2 and data.table along with base functions to accomplish this. This chapter combined with Chapter 11 covers most of the basics of data munging with an eye to both convenience and speed.

General Index

Boxplots

	muniple regression, 220	Doxplots
Addition	NAMESPACE file, 377	ggplot2, 91–94
matrices, 68	vectors, 44	overview, 85–86
order of operation, 36	Attributes for data.frame, 54	break statement, 115-116
vectors, 44–45	Author information	Breakpoints for splines, 302
	LATEX documents, 360	Building packages, 383–384
Aggregation	packages, 375	Byte-compilation for packages,
in data.table package, 135–138	@author tag, 382	376
groups, 120–123	Autocompleting code, 15–16	ByteCompile field, 376
AICC, 320	Autocorrelation, 318	
Akaike Information Criterion (AIC),	Autoregressive (AR) moving averages,	
255–257, 259–260	315–322	C
@aliases tag, 382	Average linkage methods, 352, 355	
all.obs option, 196	-	C++ code, 384–383
Ampersands (&) in compound	Axes in nonlinear least squares	package compilation, 387–390
tests, 111	model, 298	sourceCpp function, 385-387
Analysis of variance (ANOVA)		cache option for knitr chunks, 365
alternative to, 214–216	В	Calling functions, 49
cross-validation, 259–260		arguments, 100
model comparisons, 254	Back ticks (`) with functions, 49	C++, 384
overview, 207–210	Backslashes (\) in regular expressions,	conflicts, 33
And operator in compound tests,	166	Carets (^) in regular expressions,
111–112	Base graphics, 83–84	167
Andersen-Gill analysis, 244-245	boxplots, 85–86	Case sensitivity
Angle brackets (<>)	histograms, 84	characters, 40
packages, 375		package names, 384
regular expressions, 169	scatterplots, 84–85	regular expressions, 162
ANOVA. See Analysis of variance	Bayesian Information Criterion (BIC),	variable names, 38
(ANOVA)	255–257, 259	Cauchy distribution, 185-186
Ansari-Bradley test, 204	Bayesian shrinkage, 290–294	Cauchy priors in Bayesian shrinkage,
Appearance options, 21-22	Beamer mode in LATEX, 369	293-294
Appending elements to lists, 68	Beginning of lines in regular	Causation vs. correlation, 199
apt-get mechanism, 2	expressions, 167	Censored data in survival analysis,
Arguments	Bell curve, 171	240-241
C++ code, 385	Bernoulli distribution, 176	Centroid linkage methods, 352, 355
CSV files, 74	Beta distribution, 185–186	Change Install Location option, 9
functions, 49, 100-102	BIC (Bayesian Information Criterion),	character data, 40
ifelse, 110	255–257, 259	Charts, 329
package documentation, 380	Binary files, 77-79	chartsnthings site, 393
Arithmetic mean, 187	Binomial distribution, 176-181,	Chi-Squared distribution, 185-186
ARMA model, 315	185–186	Chunks
Arrays, 71–72	Bioconductor, 373	LATEX program, 362-365
Assigning variables, 36–37	BitBucket repositories, 25, 31	Markdown, 368
Asterisks (*)	Books, 394	Citations in LATEX documents, 366
Markdown, 368	bootstrap, 262–265	Classification trees, 311
		,

multiple regression, 228

Clusters, 337	Components, installing, 5	joins, 145
hierarchical, 352-357	Compound tests, 111-112	merging, 143–144
K-means algorithm, 337-345	Comprehensive R Archive Network	Data Gotham conference, 393
PAM, 345–352	(CRAN), 1, 29, 384	Data meetups, 391
registering, 283	Concatenating strings, 155-156	Data munging, 117
code	Conferences, 393	Data reshaping, 141
autocompleting, 15-16	Confidence intervals	cbind and rbind, 141-142
C++, 384–390	ANOVA, 207-209, 215-216	joins, 142–149
indenting, 99	bootstrap, 262, 264-265	reshape2 package, 149-153
running in parallel, 282	Elastic Net, 277, 279	Data structures, 53
Code Editing options, 21	GAM, 310	arrays, 71–72
Coefficient plots	multiple regression, 226	data.frame, 53–61
Bayesian shrinkage, 292–294	one-sample t-tests, 200–203	lists, 61–68
Elastic Net, 289–290	paired two-sample t-tests, 207	matrices, 68–71
logistic regression, 236	two-sample t-tests, 205–206	Data types, 38
model comparisons, 253–254	Control statements, 105	C++ code, 387
multiple regression, 226–228,	compound tests, 111–112	character, 40
230–231	if and else, 105–108	dates, 40–41
Poisson regression, 237–240	ifelse, 109–111	logical, 41–43
residuals, 247, 249	switch, 108–109	matrices, 68
VAR, 324–325		numeric, 38–39
Collate field for packages,	Converting shapefile objects into data.frame, 349	vectors, 43–48
375–376	,	Databases, reading from, 75–76
Colons (:)	Correlation and covariance, 191–200	Dates, 40–41
vectors, 44–45	Covariates in simple linear regression,	LATEX documents, 360
Color	211	packages, 375
boxplots, 92	Cox proportional hazards model,	Decision trees, 310–312
K-means algorithm, 339, 341	242–244	\DeclareGraphics Extensions, 360
2	.cpp files, 386	Default arguments, 101–102
LATEX documents, 362	CRAN (Comprehensive R Archive	
line graphs, 96	Network), 1, 29, 384	Degrees of freedom ANOVA, 215
PAM, 350–351	Create Project options, 16–17	
scatterplots, 88–90	Cross tables, 149	multiple regression, 225 splines, 300
Column index for arrays, 71 Columns	Cross-validation	*
Columns	Elastic Net, 276–277	t-tests, 201–202
cbind and rbind, 141-142	overview, 257–262	Delimiters in CSV files, 74
cbind and rbind, 141–142 data.frame, 53, 58	CSVs (comma separated files), 73-74	Delta in model comparisons, 258
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133	CSVs (comma separated files), 73–74 Cubic splines, 302	Delta in model comparisons, 258 Dendrograms
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({})	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs),	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241 missing. See Missing data	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241 missing. See Missing data Data Analysis Using Regression and	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210 multiple variables, 192	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241 missing. See Missing data Data Analysis Using Regression and Multilevel/Hierarchical Models, 50,	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377 @description tag, 382
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210 multiple variables, 192 vectors, 46	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241 missing. See Missing data Data Analysis Using Regression and Multilevel/Hierarchical Models, 50, 291, 394	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377 @description tag, 382 Destination in installation, 4–5
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210 multiple variables, 192 vectors, 46 Compilation in C++	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 Data censored, 240–241 missing. See Missing data Data Analysis Using Regression and Multilevel/Hierarchical Models, 50, 291, 394 data folder, 373–374	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377 @description tag, 382 Destination in installation, 4–5 @details tag, 382
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210 multiple variables, 192 vectors, 46 Compilation in C++ code, 384	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 Data censored, 240–241 missing. See Missing data Data Analysis Using Regression and Multilevel/Hierarchical Models, 50, 291, 394 data folder, 373–374 data.frames, 53–61	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377 @description tag, 382 Destination in installation, 4–5 @details tag, 382 dev option for knitr chunks, 365
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210 multiple variables, 192 vectors, 46 Compilation in C++ code, 384 packages, 387–390	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241 missing. See Missing data Data Analysis Using Regression and Multilevel/Hierarchical Models, 50, 291, 394 data folder, 373–374 data.frames, 53–61 converting shapefile objects into,	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377 @description tag, 382 Destination in installation, 4–5 @details tag, 382 dev option for knitr chunks, 365 Deviance in model comparisons, 256
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210 multiple variables, 192 vectors, 46 Compilation in C++ code, 384 packages, 387–390 Complete linkage methods,	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241 missing, See Missing data Data Analysis Using Regression and Multilevel/Hierarchical Models, 50, 291, 394 data folder, 373–374 data.frames, 53–61 converting shapefile objects into, 349	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377 @description tag, 382 Destination in installation, 4–5 @details tag, 382 dev option for knitr chunks, 365 Deviance in model comparisons, 256 Diffing process, 318–319
cbind and rbind, 141–142 data.frame, 53, 58 data.table, 131–133 matrices, 68–70 Comma separated files (CSVs), 73–74 Command line interface, 14–15 comment option, 365 Comments, 46 knitr chunks, 365 package documentation, 381 Community edition, 10–11 Comparing models, 253–257 multiple groups, 207–210 multiple variables, 192 vectors, 46 Compilation in C++ code, 384 packages, 387–390	CSVs (comma separated files), 73–74 Cubic splines, 302 Curly braces ({}) functions, 99 if and else, 106–107 regular expressions, 166 D Data censored, 240–241 missing. See Missing data Data Analysis Using Regression and Multilevel/Hierarchical Models, 50, 291, 394 data folder, 373–374 data.frames, 53–61 converting shapefile objects into,	Delta in model comparisons, 258 Dendrograms ggplot2, 87–88 hierarchical clustering, 352 normal distribution, 172–173 Density plots, 87–88, 184, 207 Dependencies in packages, 30 Dependent variables in simple linear regression, 211 Depends field C++ code, 386 packages, 375 Description field, 374–375 DESCRIPTION file, 374–377 @description tag, 382 Destination in installation, 4–5 @details tag, 382 dev option for knitr chunks, 365 Deviance in model comparisons, 256

T 265	T 1 1 .0 : M 1 1	C1 1 204
direction argument, 265	Exclamation marks (!) in Markdown, 368	C++, 384
Directories creating, 18	Expected value, 188	calling, 49, 100
87	Experimental variables in simple linear	conflicts, 33
installation, 4	regression, 211	do.call, 104
names, 18	Exploratory data analysis (EDA), 83,	documentation, 49
Distance between clusters, 352	199, 219	package documentation, 380
Distance metric for K-means	Exponential distribution, 185–186	return values, 103
algorithm, 337	Exponents, order of operation, 36	
Distributions. See Probability distributions	@export tag, 382	G
Division	Expressions, regular, 161–169	u
matrices, 68	Extra arguments, 102	g++ compiler, 385
order of operation, 36	Extracting	Gamma distribution, 185–186
vectors, 44–45	data from Websites, 80–81	Gamma linear model, 240
Documentation	text, 157-161	GAMs (generalized additive models),
functions, 49		304–310
	_	Gap statistic in K-means algorithm,
packages, 380–383 \documentclass, 360	F	343–344
Documents as R resources, 394		Garbage collection, 38
Dollar signs (\$)	F distribution, 185–186	GARCH (generalized autoregressive
data.frame, 56	F-tests	conditional heteroskedasticity)
multiple regression, 225	ANOVA, 215	models, 327-336
regular expressions, 167	multiple regression, 225	Gaussian distribution, 171-176
%dopar% operator, 284	simple linear regression, 214–215	gcc compiler, 385
dot-dot-dot argument (), 102	two-sample, 204	General options for RStudio tools,
Downloading R, 1–2	faceted plots, 89–92	20-21
DSN connections, 75	factor data type, 40	Generalized additive models (GAMs),
Dynamic Documents with R and	factors	304–310
knitr, 394	as.numeric with, 160	Generalized autoregressive conditional
dzslides format, 369	Elastic Net, 273	heteroskedasticity (GARCH)
dzsildes format, 509	storing, 60 vectors, 48	models, 327-336
	FALSE value	Generalized linear models, 233
Е	with if and else, 105–108	logistic regression, 233–237
	with logical operators, 41–43	miscellaneous, 240
echo option for knitr chunks, 365	fig.cap option, 365–366	Poisson regression, 237–240
EDA (Exploratory data analysis), 83,	fig.scap option, 365	Geometric distribution, 185–186
199, 219	fig.show option, 365	Git
Elastic Net, 271–290	fill argument for histograms, 87	integration with RStudio, 25–26
Elements of Statistical Learning: Data	Fitted values against residuals plots,	selecting, 19
Mining, Inference, and Prediction, 394	249–251	Git/SVN option, 25
End of lines in regular expressions, 167	folder structure, 373	GitHub repositories, 25
engine option for knitr chunks, 365	for loops, 113-115	for bugs, 392
Ensemble methods, 312	Forests, random, 312-313	package installation from, 31, 383
Environment, 13–14	formula interface	README files, 380
command line interface, 14–15	aggregation, 120-123	Graphics, 83
RStudio. See RStudio overview	ANOVA, 208	base, 83–86
Equal to symbol (=)	Elastic Net, 272	ggplot2, 86–97
if and else, 105	logistic regression, 235-236	Greater than symbols (>)
variable assignment, 36	multiple regression, 224, 226, 230	if and else, 105
Equality of matrices, 68	scatterplots, 84-85	variable assignment, 37
Esc key in command line	simple linear regression, 213	Groups, 117
commands, 15	Formulas for distributions, 185-186	aggregation, 120–123
eval option for knitr chunks, 365	Frontend field for packages, 374	apply family, 117–120
everything option, 196	Functions	comparing, 207–210
@examples tag, 382	arguments, 100-102	data.table package, 129-138
Excel data, 74–75	assigned to objects, 99	plyr package, 124–129

Н	inst folder, 373-374	lasso in Elastic Net, 271, 276, 279,
II. 1 C	Install dependencies option, 30	282
Hadoop framework, 117	install.packages command, 31	LATEX program
Hartigan's Rule, 340–342	Install Packages option, 30	installing, 359
Hash symbols (#)	installing packages, 29-32,	knitr, 362–367
comments, 46 Markdown, 368	383–384	overview, 360–362
	installing R, 2	Leave-one-out cross-validation, 258
package documentation, 381 pandoc, 369	on Linux, 10	Legends in scatterplots, 89
header command in pandoc, 369	on Mac OS X, 8–10	Length
Heatmaps, 193	on Windows, 2–7	characters, 40
Hello, World! program, 99–100	integer type, 38–39	lists, 66–67
Help pages in package documentation,	Integers in regular expressions, 166	vectors, 45–46
381	Integrated Development Environments (IDEs), 13–14	Less than symbols (<)
Hierarchical clustering, 352–357	Intel Matrix Kernel Library, 10	if and else, 105 variable assignment, 36
Histograms, 84	Interactivity, 13	letters vector, 70
bootstrap, 264	Intercepts	LETTERS vector, 70
ggplot2, 87–88	multiple regression, 216	Levels
multiple regression, 219	simple linear regression, 212–213	Elastic Net, 273
Poisson regression, 238	Interquartile Range (IQR), 85–86	factors, 48, 60
residuals, 253	Introduction to R, 394	LICENSE file, 380
Hotspot locations, 297–298	Inverse gaussian linear model, 240	Licenses
HTML tables, extracting data from,	IQR (Interquartile Range), 85–86	Mac, 8–9
80–81	Italics in Markdown, 367	packages, 373–375
Hypergeometric distribution, 185-186	Iteration with loops, 113	SAS, 77
Hypothesis tests in t-tests, 201–203	controlling, 115–116	Windows, 3
71	for, 113–115	Line breaks in Markdown, 367
	while, 115	Line graphs, 94–96
		Linear models, 211
		generalized, 233-240
IDEs (Integrated Development	J	multiple regression, 216-232
Environments), 13–14	T. 1. 1. 155 455	simple linear regression, 211-21
if else statements, 105–108	Joining strings, 155–156	LinkingTo field, 386
Images in IATEX documents, 360	Joins, 142–143	Links
@import tag, 382	data.table, 149	C++ libraries, 386
Imports field for packages, 375	merge, 143–144	hierarchical clustering, 352, 355
include option for knitr chunks, 365	plyr package, 144–149 Joint Statistical Meetings, 393	linear models, 240
Indenting code, 99	Joint Statistical Meetings, 373	Markdown, 368
Independent variables in simple linear		Linux
regression, 211	K	C++ compilers, 385
Indexes		downloading R, 1-2
arrays, 71	k-fold cross-validation, 257-258	installation on, 10
data.table, 129	K-means algorithm, 337-345	Lists
LATEX documents, 360	K-medoids, 345-352	data.table package, 136–138
lists, 66	key columns with join, 144	joins, 145–149
Indicator variables	keys for data.table package, 133-135	lapply and sapply, 118–119
data.frame, 60	knots for splines, 302	Markdown, 367
Elastic Net, 273, 289–290		overview, 61–68
multiple regression, 225		Loading
PAM, 345	L	packages, 32–33
Inferences	*** 1. 274	rdata files, 162
ensemble methods, 312	L1 penalty, 271	log-likelihood in AIC model, 255
multiple regression, 216	L2 penalty, 271	Log-normal distribution, 185–186
@inheritParams tag, 382	Lags in autoregressive moving average,	logical data type, 41–43
Innovation distribution, 330	318–319	Logical operators
Input variables in simple linear regression, 211	lambda functions, 279–282, 285–289 Language selection, 3	compound tests, 111–112 vectors, 46
10510331011, 411	Language sciection, J	vectors, To

Logistic distribution, 185–186	Minus signs (-) in variable assignment,	NAMESPACE file, 377–379
Logistic regression, 233–237	36–37	Natural cubic splines, 302
Loops, 113	Missing data, 50	Negative binomial distribution,
controlling, 115-116	apply, 118	185–186
for, 113-115	cor, 195–196	Nested indexing of list elements, 66
while, 115	cov, 199	NEWS file, 379
	mean, 188	Nodes in decision trees, 311–312
	NA, 50	
M	NULL, 51	Noise
	PAM, 346	autoregressive moving average,
Mac	MKL (Matrix Kernel Library), 10	315
C++ compilers, 385	Model diagnostics, 247	VAR, 324
downloading R, 1	bootstrap, 262–265	Nonlinear models, 297
installation on, 8–10	comparing models, 253–257	decision trees, 310-312
Machine learning, 304	cross-validation, 257–262	generalized additive model,
Machine Learning for Hackers, 394	residuals, 247–253	304–310
Machine Learning meetups, 391	stepwise variable selection,	nonlinear least squares model,
Maintainer field for packages, 375	265–269	297–299
makeCluster function, 283	Moving average (MA) model, 315	random forests, 312–313
\makeindex, 360	Moving averages, autoregressive,	
Makevars file, 386–389	315–322	splines, 300–304
Makevars.win file, 386–389	Multicollinearity in Elastic Net, 273	Nonparametric Ansari-Bradley test,
man folder, 373–374	Multidimensional scaling in K-means	204
	algorithm, 339	Normal distribution, 171–176
MapReduce paradigm, 117	Multinomial distribution, 185–186	Not equal symbols (!=) with if and
Maps	Multinomial regression, 240	else, 105
heatmaps, 193	Multiple group comparisons, 207–210	nstart argument, 339
PAM, 350–351	Multiple imputation, 50	Null hypotheses
Markdown tool, 367–369	Multiple regression, 216–232	one-sample t-tests, 201-202
Math, 35–36	Multiple time series in VAR, 322–327	paired two-sample t-tests, 207
Matrices	Multiplication	NULL value, 50-51
with apply, 117–118	matrices, 69–71	Numbers in regular expressions,
with cor, 192	order of operation, 36	165–169
Elastic Net, 272	vectors, 44–45	numeric data, 38–39
overview, 68–71		
VAR, 324	Multivariate time series in VAR, 322	
Matrix Kernel Library (MKL), 10		0
.md files, 369-371	Ν	
Mean		Objects, functions assigned to, 99
ANOVA, 209	na.or.complete option, 196	Octave format, 77
bootstrap, 262	na.rm argument	1/mu^2 function, 240
calculating, 187-188	cor, 195–196	One-sample t-tests, 200–203
normal distribution, 171	mean, 188	Operations
Poisson regression, 237-238	standard deviation, 189	*
t-tests, 203, 205	NA value	order, 36
various statistical distributions,	with mean, 188	vectors, 44–48
185–186	overview, 50	Or operators in compound tests,
Mean squared error in	Name-value pairs for lists, 64	111–112
cross-validation, 258	Names	Order of operations, 36
Measured variables in simple linear	arguments, 49, 100	Ordered factors, 48
regression, 211	data.frame columns, 58	out.width option, 365
Meetups, 391-392	directories, 18	Outcome variables in simple linear
Memory in 64-bit versions, 2	lists, 63–64	regression, 211
Merging	packages, 384	Outliers in boxplots, 86
data.frame, 143–144		O 1: : : D :
	variables, 37–38	Overdispersion in Poisson regression,
data.table, 149	variables, 3/–38 vectors, 47	Overdispersion in Poisson regression, 238

Р	Q-Q, 249, 252	R folder, 373–374
	residuals, 250-251	R in Finance conference, 393
p-values	scatterplots. See Scatterplots	R Inferno, 394
ANOVA, 208	silhouette, 346–348	R Productivity Environment (RPE),
multiple regression, 225	Plus signs (+) in regular expressions,	26–27
t-tests, 200-203	169	Raise to power function, 45
Package field in DESCRIPTION file,	Poisson distribution, 182–184	Random numbers
374–377	Poisson regression, 237–240	binomial distribution, 176
Packages, 29, 373	POSIXct data type, 40	normal distribution, 171–172
building, 33	Pound symbols (#)	Random starts in K-means algorithm,
C++ code, 384–390	comments, 46	339
checking and building, 383–384	Markdown, 368	Remdr interface, 14
compiling, 387–390	package documentation, 381	.Rd files, 380, 383 RData files
DESCRIPTION file, 374–377	pandoc, 369	
documentation, 380–383	Prediction in GARCH models,	creating, 77
files overview, 373–374	335	loading, 162
folder structure, 373	Predictive Analytics meetups, 391	Readability of functions, 99
installing, 29–32, 383–384	Predictors 210, 211	Reading data, 73
loading, 32–33	decision trees, 310–311	binary files, 77–79 CSVs, 73–74
miscellaneous files, 379–380	Elastic Net, 272	from databases, 75–76
NAMESPACE file, 377–379	generalized additive models, 304	Excel, 74–75
options, 23	logistic regression, 233	included with R, 79–80
submitting to CRAN, 384	multiple regression, 216–217	from statistical tools, 77
uninstalling, 32	simple linear regression, 211, 213	README files, 380
unloading, 33	splines, 302–303	Real-life resources, 391
Packages pane, 29–30	Priors, 290, 293–294	books, 394
Paired two-sample t-tests, 206–207	Probability distributions, 171 binomial, 176–181	conferences, 393
pairwise.complete option, 197	· · · · · · · · · · · · · · · · · · ·	documents, 394
PAM (Partitioning Around Medoids),	miscellaneous, 185–186 normal, 171–176	meetups, 391–392
345–352		Stack Overflow, 392
pandoc utility, 369–371	Poisson, 182–184 Program Files\R directory, 4	Twitter, 393
Pane Layout options, 21–22	Projects in RStudio, 16–19	Web sites, 393
Parallel computing, 282–284	prompt option for knitr chunks,	Reference Classes system, 377
@param tag, 381–382	365	Registering clusters, 283
Parentheses ()	303	Regression
arguments, 100	0	generalized additive models, 304
compound tests, 111	Q	logistic, 233–237
expressions, 63	0.0.1240.252	multiple, 216-232
functions, 99	Q-Q plots, 249, 252	Poisson, 237–240
if and else, 105	Quantiles	simple linear, 211-216
order of operation, 36	binomial distribution, 181	survival analysis, 240-245
regular expressions, 163	multiple regression, 225	Regression to the mean, 211
Partial autocorrelation, 318-319	normal distribution, 175–176	Regression trees, 310
Partitioning Around Medoids (PAM), 345–352	summary function, 190 Quasibinomial linear model, 240	Regular expressions, 161–169 Regularization and shrinkage, 271
Passwords in installation, 9	Quasipoisson family, 239	Bayesian shrinkage, 290-294
Patterns, searching for, 161-169	Question marks (?)	Elastic Net, 271-290
PDF files, 362, 369	with functions, 49	Relationships
Percent symbol (%) in pandoc, 369	regular expressions, 169 Quotes (") in CSV files, 74	correlation and covariance, 191–200
Periods (.)		multiple regression, 216-232
uses, 99	R	simple linear regression,
variable names, 37		211–216
Plots	R-Bloggers site, 393	Removing variables, 37-38
coefficient. See Coefficient plots	R CMD commands, 383	Repeating command line
faceted, 89-92	R Enthusiasts site, 393	commands, 15

Reshaping data, 141	multiple regression, 220–224	Standard deviation
cbind and rbind, 141–142	splines, 303	missing data, 189
joins, 142–149	scope argument, 265	normal distribution, 171
reshape2 package, 149–153	Scraping web data, 81	simple linear regression, 213
Residual standard error in least squares	Seamless R and C++ Integration with	t-tests, 201–202, 205
model, 298	Rcpp, 394	Standard error
Residual sum of squares (RSS),	Searches, regular expressions for,	Elastic Net, 279, 289
254–255	161–169	least squares model, 298
Residuals, 247–253	Secret weapon, 293	multiple regression, 225-226
Resources. See Real-life resources	Sections in IATEX documents, 361	simple linear regression, 213-216
Responses	@seealso tag, 382	t-tests, 202
decision trees, 310	Seeds for K-means algorithm, 338	start menu shortcuts, 6
logistic regression, 233	Semicolons (;) for functions, 100	startup options, 5
multiple regression, 216-217,	sep argument, 155	Stata format, 77
219, 225	Shapefile objects, converting into	Stationarity, 318
Poisson regression, 237	data.frame, 349	Statistical graphics, 83
residuals, 247	Shapiro-Wilk normality test, 204	base, 83-86
simple linear regression,	Shortcuts, keyboard, 15	ggplot2, 86-97
211–213	Shrinkage	Statistical tools, reading data from, 77
@return tag, 381-382	Bayesian, 290-294	Stepwise variable selection, 265-269
Return values in functions, 103	Elastic Net, 271	Strings, 155
Revolution Analytics site, 393	Silhouette plots, 346–348	joining, 155-156
Ridge in Elastic Net, 271, 279	Simple linear regression	regular expressions, 161-169
.Rmd files, 369	ANOVA alternative, 214-216	sprintf, 156-157
.Rnw files, 362	overview, 211–214	text extraction, 157–161
Rows	Single linkage methods, 352, 355	stringsAsFactors argument, 75
in arrays, 71	64-bit vs. 32-bit R, 2	Submitting packages to CRAN,
bootstrap, 262	Size	384
cbind and rbind, 141-142	binomial distributions,	Subtraction
data.frame, 53	176–179	matrices, 68
data.table, 131	lists, 65	order of operation, 36
with mapply, 120	sample, 187	vectors, 44–45
matrices, 68–70	Slashes (/) in C++ code, 385-386	Suggests field in packages, 375–376
RPE (R Productivity Environment),	Slide show formats, 369	Summary statistics, 187–191
26–27	slideous slide show format, 369	Survival analysis, 240–245
RSS (residual sum of squares),	slidy format, 369, 371	SVN repository, 17, 19, 25
254–255	Slope in simple linear regression,	switch statements, 108–109
RStudio overview, 15-16	212–213	Systat format, 77
Git integration, 25–26	Small multiples, 89	System Islands, //
projects, 16–19	Smoothing functions in GAM, 304	
tools, 20–25	Smoothing splines, 300-301	T
RTools, 385	Software license, 3	<u> </u>
Run as Administrator option, 3	Spelling options, 23-24	t distribution
Running code in parallel, 283	Splines, 300–304	functions and formulas, 185-186
, , , , , , , , , , , , , , , , , , ,	Split-apply-combine method, 117,	GARCH models, 330
	124	t-statistic, 201-202, 225
S	SPSS format, 77	t-tests, 200
	Square brackets ([])	multiple regression, 225
S3 system, 377	arrays, 71	one-sample, 200-203
@S3method tag, 382	data.frame, 56, 58	paired two-sample, 206-207
S4 system, 377	lists, 65	two-sample, 203–206
s5 slide show format, 369	Markdown, 368	Tab key for autocompleting
SAS format, 77	vectors, 47	code, 15
Scatterplots, 84-85	Squared error loss in nonlinear least	Tables of contents in pandoc, 371
correlation, 192	squares model, 297	Tags for roxygen2, 381-382
generalized additive models, 307	src folder, 373–374, 387	Tensor products, 308
ggplot2, 88–91	Stack Overflow source, 392	test folder, 374
	,	•

Text	U
extracting, 157-161	us
LATEX documents, 362	U
regular expressions, 167-169	
Themes in ggplot2, 96-97	
32-bit vs. 64-bit R, 2	
Tildes (∼) in aggregation, 120	_
Time series and autocorrelation, 315	V.
autoregressive moving average,	
315–322	V
GARCH models, 327-336	
VAR, 322-327	
Title field, 374–375	
@title tag, 382	
Titles	
help files, 381	V
IATEX documents, 360	
packages, 374-375	
slides, 369	
Transposing matrices, 70	
Trees	
decision, 310-312	
hierarchical clustering, 354	V
TRUE value	
with if and else, 105-108	V
with logical operators, 41-43	V
Twitter resource, 393	
Two-sample t-tests, 203-206	
Type field for packages, 374–375	
Types. See Data types	
U	
Underscores (_)	
Markdown, 367	V
variable names, 37	V
Unequal length vectors, 46	V
Uniform (Continuous) distribution,	V
185–186	V

Uninstalling packages, 32

Unloading packages, 33 @useDynLib tag, 382

useful package, 273, 341

UseMethod command, 377
useR! conference, 393
User installation options, 9

VAR (vector autoregressive) model, 322-327 Variables, 36 assigning, 36-37 names, 37 relationships between, 211-216 removing, 37-38 stepwise selection, 265-269 Variance, 189 ANOVA, 207-210 GARCH models, 327 Poisson regression, 238 t-tests, 203 various statistical distributions, 185-186 Vector autoregressive (VAR) model, 322-327 Vectorized arguments with ifelse, 110 Vectors, 43-44 data.frame, 56 factors, 48 in for loops, 113-114 multiple regression, 217 multiplication, 44-45 operations, 44-48 paste, 155-156 sprintf, 157 Version control, 19 Version field for packages, 375 version number, saving, 6-7 Versions, 2 Vertical lines (|) in compound tests, 111 vim mode, 21

Violins plots, 91–94

Volatility in GARCH models, 330

W

Weakly informative priors, 290 Websites extracting data from, 80-81 R resources, 393 Weibull distribution, 185-186 Welch two-sample t-tests, 203 while loops, 115 White noise autoregressive moving average, 315 VAR, 324 WiFi hotspot locations, 297-298 Windows C++ compilers, 385 downloading R, 1 installation on, 2-7 Windows Live Writer, 15 within-cluster dissimilarity, 343 Wrapper functions, 386 Writing R Extensions, 394

Χ

X-axes in nonlinear least squares model, 298 Xcode, 385

Υ

Y-axes in nonlinear least squares model, 298 y-intercepts multiple regression, 216 simple linear regression, 212–213

7

Zero Intelligence Agents site, 393 zypper mechanism, 2