


Critical differences 

This section highlights differences in Python and R that could result in inadvertent errors if the wrong 
convention is used (i.e. code may still run but would produce wrong results). 

 

Topic R Python 

General 
purposes 

R was developed specifically for 
statistical computing and data 

analysis. 

Python was developed as a general-purpose 
programming language. 

Boolean 
TRUE or T 
FALSE or F 

True 
False 

All capital letters are not allowed 
Array indexing Starts at 1 Starts at 0 

Indentation 
Has no impact on code – is purely 

cosmetic 
Has a specific meaning in the code. 

Reducing the indentation level indicates the 
end of a block of code. 

Length of a 
string 

nchar(x) 
Do not use length(x) 

len(x) 

Return 
statements in 

functions 

If no return statement is specified, 
will return the last calculation done 

within the function 

Return statement must be specified if we 
want the function to return an output; 

otherwise, it will return “None” 

Interpretation 
of “=” 

The “=” sign will create an 
independent copy of the object. For 
example, if we do data_2 = data_1, 
and perform some manipulations 

on data_2, then data_1 will be 
unchanged. 

The “=” sign will create a new pointer to the 
original object, which will not behave 

independently. For example, if we do data_2 
= data_1, and perform some manipulations 

on data_2, the same operations will be 
applied to data_1. 

To make an independent copy of a dataset, 
use data_2 = data_1.copy() instead. 

 

  



Structural differences 

This section highlights differences in Python and R that represent significant differences in the way the 
code is structured, but which are unlikely to cause non-obvious errors (i.e. if the wrong approach is used 
then the code would not run). 

Topic R Python 

Code blocks 

Are encased in braces { and } 
example = function(x){ 

some code 
some more code 

return(something) 
} 

Begins with a line ending with a colon. On the next 
line, the indentation level increases by 1. The code 
block ends when the indentation level returns back 

to where it was at the start of the code block. 
def example(x): 

some code 
some more code 
return something 

more code that is not part of the function definition 

Common ways to 
create unlabeled 

sequences of 
objects 

In R, these are called vectors. Use 
the “c” command to create one, 

e.g. c(1, 2, 3) 
c here stands for combination. 

Elements in an R vector must all be 
of the same type. 

In Python, this is called a list. Use square brackets 
with elements separated by commas, e.g. [1, 2, 3] 

Elements in a Python list can be of mixed type. 
Can also create a tuple using round parentheses, 
but these cannot be changed after being created. 

Example: (1, 2, 3) 

Common ways to 
create labelled 
sequences of 

objects 

In R, this is called a list. Use the 
“list” command to create one, 

separating key-value pairs with an 
equal sign, e.g. l = list('a' = 1, 'b' = 

2, 'c' = 3) 
Access elements with the $ symbol, 

e.g. l$a is 1 

In Python, this is called a dictionary. Use braces to 
create on, separating the list of key-value pairs with 

commas, e.g. d = {'a':1, 'b':2, 'c':3} 
Access elements using square brackets, e.g. d['a'] is 

1 

Applying a 
function across 
all elements of 

an array 

Use the lapply command Use the list comprehension syntax, e.g. [formula for 
x in list if condition] 

Loop for(i in 1:10) {...} for i in range(10): ... 
Conditional 
statement 

if(x > 3) {...} if x > 3: ... 

Call a function 

function(data) function(data) 
data.function() 

In Python, we have more ways to call a function, in 
which data oriented is a common way: 

For example: 
mean(data) 

but we also call: 
data.mean() 

Access a column 
in a data frame 

1.     Using the $ operator: 
data_frame$column 

2.     Using square brackets []: 
data_frame[, "column"] 

1.     Using square brackets []: data_frame["column"] 
2.     Using the dot notation: data_frame.column 
(only works if the column name does not contain 

any spaces or special characters) 

 

  



Minor Differences 

These are differences in naming or notational conventions that don’t cause major changes in the structure 
of a code, but which might result in needing to change the name of a keyword or function. Items in this 
list will cause an obvious error (e.g. code won’t run) if the wrong convention is used. 

Topic R Python 

Concatenating 
strings 

Use “cat”, paste() or “paste0” 
cat("Hello,", "world!") 

Note: paste0() is similar to paste(), but 
it does not add any separator between 
the strings, while we can regulate the 
separator in paste(). For example, we 

can paste("Line 1", "Line 2", sep = "\n") 
to break line. 

Use “+” 
“Hello, " + "World!" 

Other options: format(), join() 
concatenated_string = 

"{}{}".format(string1, string2) 
concatenated_string = "_".join([string1, 

string2]) 

Displaying text 

Use “print” – this can only display a 
single string 

Use the print command. This can handle a 
sequence of strings / variables and will 
print them all out with a space between 

them. 
Exponentiation Can use a ** b or a^b Use a ** b 

Modular 
arithmetic 

Use a %% b Use a % b 

Integer division, 
discarding 
remainder 

Use a %/% b Use a // b 

Determine type 
of a variable 

Use typeof(x) Use type(x) 

Change type of a 
variable 

General format of the function is 
“to.type()”. Example: to.integer(x) 

General format of the function is “type()”. 
Example: int(x) 

Boolean 
variables 

Use all-caps, TRUE and FALSE Capitalize only first letter, True and False 

Install package install.packages('name') pip install name 

Importing 
additional 

functionality 

These are called packages in R 
Use library(package) 

 
In R, when we access a library, all 
functions of that library will be 

available. 

These are called modules in Python 
Use from package import module 

from sklearn import metrics 
 

Note: In Python, every import only does 
with a specific function from that 
library. So if you need to import all 

modules, you need to use below syntax: 
from package import * 

For example: 
from pandas import * 

Comment out Ctrl + Shift + C  Windows: CTRL + 3 
Mac: CMD + 3 

Create a 
function 

Use function() 
function_name <- function(arg1, 

arg2){ 
return() 

} 

Use def() 
def function_name(arg1, arg2): 

return() 



Lambda 
functions 

Do not have. 
Still use using the function() keyword 

to create function. 

Lambda functions are anonymous 
functions in Python, meaning they are 

functions without a name. They are used 
to perform a small task or calculation and 
are often used in combination with other 
functions like filter(), map() or reduce(). 

The syntax of a lambda function in Python 
is: 

lambda arguments: expression 
f = lambda x: x**2 

print(f(5)) # 25 
Condition 

ifelse() 
R offers this. Not offer. Need to use normal syntax: 

result = x if x > y else y 

Call for help 

Type in Console: 
?function_name() 

??function_name()→ To check the 
package that contains the function. 

For example: 
?mutate() 

Help(function_name) 
For example: 

Help(len) 
Note: Python also has dir(), a function 

used to return a list of valid attributes and 
methods of an object. For example, 

dir(list) returns a list of attributes and 
methods available for the built-in list type 

Check available 
built-in 

functions 

is("package:base") :This will return a 
character vector of all the functions in 
the base package or help(base) : see a 

list of all the functions in the base 
package, along with brief descriptions 

of each. 

dir(__builtins__) 

Unequal != != or <> 

 

  



Some differences in Data Manipulation 

These are differences in fundamental data cleaning steps when working with data 
frames. In R, dplyr is the main library for data frame manipulation along with R-based 
functions, while in Python, it’s Pandas. 

Topic R Python 
Check structure str(df) df.info() 

Data dimension dim(df) df.shape 
Note: No bracket here for shape 

Variables of 
data frame 

colnames(df) df.columns 
Note: No bracket here for columns 

Drop columns 

- Single: 
df$column <- NULL 

- Multiples: 
▪ By index 

df[ , -c(column_index_1, 
column_index_2)] 

▪ By name 
df[ , !names(data_frame) %in% 
c("column_name1", 
"column_name2")] 

- Single: 
del df["column_name"] 
or We can use below code with 1 column name. 

- Multiples: 
df.drop(columns=["column_1", "column_2"], 
inplace=True) 

Check unique 
values 

unique(df$column_name) df["column_name"].unique() 
df["column_name"].value_counts() 

For value_counts() we can state an argument 
normalize = True to calculate the proportion of 

each element in the column. 
Check 

duplicated 
observations 

summary(duplicated(df)) df.duplicated().sum() 

Drop 
duplicated 

values 

df[!duplicated(df), ] 

or you can use dplyr as follow: 

df %>% distinct() 

df.drop_duplicates(inplace=True) 

Check missing 
values 

- Single column 
is.na(df$column_name) 

- Multiple columns  
sapply(df, function(x) 
sum(is.na(x))) 

df.isnull().sum() 

Drop NA new_df <- na.omit(df) new_df = df.dropna() 

Fill NA 

We can use replace_na() function 
in tidyr, or na.fill() from the zoo 

library, 

or we can use R base like this: 

df[is.na(df$col), "col"] <- value 

It’s easier to replace NA in Python. We just need 
to specify column and value then conduct this 

code: 

df.fillna(value) 

df.column_name.fillna(value) 
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