

Critical differences

This section highlights differences in Python and R that could result in inadvertent errors if the wrong
convention is used (i.e. code may still run but would produce wrong results).

Topic R Python

General
purposes

R was developed specifically for
statistical computing and data

analysis.

Python was developed as a general-purpose
programming language.

Boolean
TRUE or T
FALSE or F

True
False

All capital letters are not allowed
Array indexing Starts at 1 Starts at 0

Indentation
Has no impact on code – is purely

cosmetic
Has a specific meaning in the code.

Reducing the indentation level indicates the
end of a block of code.

Length of a
string

nchar(x)
Do not use length(x)

len(x)

Return
statements in

functions

If no return statement is specified,
will return the last calculation done

within the function

Return statement must be specified if we
want the function to return an output;

otherwise, it will return “None”

Interpretation
of “=”

The “=” sign will create an
independent copy of the object. For
example, if we do data_2 = data_1,
and perform some manipulations

on data_2, then data_1 will be
unchanged.

The “=” sign will create a new pointer to the
original object, which will not behave

independently. For example, if we do data_2
= data_1, and perform some manipulations

on data_2, the same operations will be
applied to data_1.

To make an independent copy of a dataset,
use data_2 = data_1.copy() instead.

Structural differences

This section highlights differences in Python and R that represent significant differences in the way the
code is structured, but which are unlikely to cause non-obvious errors (i.e. if the wrong approach is used
then the code would not run).

Topic R Python

Code blocks

Are encased in braces { and }
example = function(x){

some code
some more code

return(something)
}

Begins with a line ending with a colon. On the next
line, the indentation level increases by 1. The code
block ends when the indentation level returns back

to where it was at the start of the code block.
def example(x):

some code
some more code
return something

more code that is not part of the function definition

Common ways to
create unlabeled

sequences of
objects

In R, these are called vectors. Use
the “c” command to create one,

e.g. c(1, 2, 3)
c here stands for combination.

Elements in an R vector must all be
of the same type.

In Python, this is called a list. Use square brackets
with elements separated by commas, e.g. [1, 2, 3]

Elements in a Python list can be of mixed type.
Can also create a tuple using round parentheses,
but these cannot be changed after being created.

Example: (1, 2, 3)

Common ways to
create labelled
sequences of

objects

In R, this is called a list. Use the
“list” command to create one,

separating key-value pairs with an
equal sign, e.g. l = list('a' = 1, 'b' =

2, 'c' = 3)
Access elements with the $ symbol,

e.g. l$a is 1

In Python, this is called a dictionary. Use braces to
create on, separating the list of key-value pairs with

commas, e.g. d = {'a':1, 'b':2, 'c':3}
Access elements using square brackets, e.g. d['a'] is

1

Applying a
function across
all elements of

an array

Use the lapply command Use the list comprehension syntax, e.g. [formula for
x in list if condition]

Loop for(i in 1:10) {...} for i in range(10): ...
Conditional
statement

if(x > 3) {...} if x > 3: ...

Call a function

function(data) function(data)
data.function()

In Python, we have more ways to call a function, in
which data oriented is a common way:

For example:
mean(data)

but we also call:
data.mean()

Access a column
in a data frame

1. Using the $ operator:
data_frame$column

2. Using square brackets []:
data_frame[, "column"]

1. Using square brackets []: data_frame["column"]
2. Using the dot notation: data_frame.column
(only works if the column name does not contain

any spaces or special characters)

Minor Differences

These are differences in naming or notational conventions that don’t cause major changes in the structure
of a code, but which might result in needing to change the name of a keyword or function. Items in this
list will cause an obvious error (e.g. code won’t run) if the wrong convention is used.

Topic R Python

Concatenating
strings

Use “cat”, paste() or “paste0”
cat("Hello,", "world!")

Note: paste0() is similar to paste(), but
it does not add any separator between
the strings, while we can regulate the
separator in paste(). For example, we

can paste("Line 1", "Line 2", sep = "\n")
to break line.

Use “+”
“Hello, " + "World!"

Other options: format(), join()
concatenated_string =

"{}{}".format(string1, string2)
concatenated_string = "_".join([string1,

string2])

Displaying text

Use “print” – this can only display a
single string

Use the print command. This can handle a
sequence of strings / variables and will
print them all out with a space between

them.
Exponentiation Can use a ** b or a^b Use a ** b

Modular
arithmetic

Use a %% b Use a % b

Integer division,
discarding
remainder

Use a %/% b Use a // b

Determine type
of a variable

Use typeof(x) Use type(x)

Change type of a
variable

General format of the function is
“to.type()”. Example: to.integer(x)

General format of the function is “type()”.
Example: int(x)

Boolean
variables

Use all-caps, TRUE and FALSE Capitalize only first letter, True and False

Install package install.packages('name') pip install name

Importing
additional

functionality

These are called packages in R
Use library(package)

In R, when we access a library, all
functions of that library will be

available.

These are called modules in Python
Use from package import module

from sklearn import metrics

Note: In Python, every import only does
with a specific function from that
library. So if you need to import all

modules, you need to use below syntax:
from package import *

For example:
from pandas import *

Comment out Ctrl + Shift + C Windows: CTRL + 3
Mac: CMD + 3

Create a
function

Use function()
function_name <- function(arg1,

arg2){
return()

}

Use def()
def function_name(arg1, arg2):

return()

Lambda
functions

Do not have.
Still use using the function() keyword

to create function.

Lambda functions are anonymous
functions in Python, meaning they are

functions without a name. They are used
to perform a small task or calculation and
are often used in combination with other
functions like filter(), map() or reduce().

The syntax of a lambda function in Python
is:

lambda arguments: expression
f = lambda x: x**2

print(f(5)) # 25
Condition

ifelse()
R offers this. Not offer. Need to use normal syntax:

result = x if x > y else y

Call for help

Type in Console:
?function_name()

??function_name()→ To check the
package that contains the function.

For example:
?mutate()

Help(function_name)
For example:

Help(len)
Note: Python also has dir(), a function

used to return a list of valid attributes and
methods of an object. For example,

dir(list) returns a list of attributes and
methods available for the built-in list type

Check available
built-in

functions

is("package:base") :This will return a
character vector of all the functions in
the base package or help(base) : see a

list of all the functions in the base
package, along with brief descriptions

of each.

dir(__builtins__)

Unequal != != or <>

Some differences in Data Manipulation

These are differences in fundamental data cleaning steps when working with data
frames. In R, dplyr is the main library for data frame manipulation along with R-based
functions, while in Python, it’s Pandas.

Topic R Python
Check structure str(df) df.info()

Data dimension dim(df) df.shape
Note: No bracket here for shape

Variables of
data frame

colnames(df) df.columns
Note: No bracket here for columns

Drop columns

- Single:
df$column <- NULL

- Multiples:
▪ By index

df[, -c(column_index_1,
column_index_2)]

▪ By name
df[, !names(data_frame) %in%
c("column_name1",
"column_name2")]

- Single:
del df["column_name"]
or We can use below code with 1 column name.

- Multiples:
df.drop(columns=["column_1", "column_2"],
inplace=True)

Check unique
values

unique(df$column_name) df["column_name"].unique()
df["column_name"].value_counts()

For value_counts() we can state an argument
normalize = True to calculate the proportion of

each element in the column.
Check

duplicated
observations

summary(duplicated(df)) df.duplicated().sum()

Drop
duplicated

values

df[!duplicated(df),]

or you can use dplyr as follow:

df %>% distinct()

df.drop_duplicates(inplace=True)

Check missing
values

- Single column
is.na(df$column_name)

- Multiple columns
sapply(df, function(x)
sum(is.na(x)))

df.isnull().sum()

Drop NA new_df <- na.omit(df) new_df = df.dropna()

Fill NA

We can use replace_na() function
in tidyr, or na.fill() from the zoo

library,

or we can use R base like this:

df[is.na(df$col), "col"] <- value

It’s easier to replace NA in Python. We just need
to specify column and value then conduct this

code:

df.fillna(value)

df.column_name.fillna(value)

	Some differences in Data Manipulation

