

Python Tricks: The Book

Dan Bader

For online information and ordering of this and other books by Dan
Bader, please visit dbader.org. For more information, please contact
Dan Bader at mail@dbader.org.

Copyright © Dan Bader (dbader.org), 2016–2017

ISBN: 9781775093305 (paperback)

ISBN: 9781775093312 (electronic)

Cover design by Anja Pircher Design (anjapircher.com)

“Python” and the Python logos are trademarks or registered trade-
marks of the Python Software Foundation, used by Dan Bader with
permission from the Foundation.

Thank you for downloading this ebook. This ebook is licensed for your
personal enjoyment only. This ebookmaynot be re-sold or given away
to other people. If you would like to share this book with another per-
son, please purchase an additional copy for each recipient. If you’re
reading this book and did not purchase it, or it was not purchased
for your use only, then please return to dbader.org/pytricks-book and
purchase your own copy. Thank you for respecting the hard work be-
hind this book.

Updated 2017-10-27 I would like to thankMichaelHowitz, Johnathan
Willitts, Julian Orbach, Johnny Giorgis, Bob White, Daniel Meyer,
Michael Stueben, Smital Desai, Andreas Kreisig, David Perkins, Jay
Prakash Singh, and Ben Felder for their excellent feedback.

What Pythonistas Say About Python Tricks: The Book

”I love love love the book. It’s like having a seasoned tutor explaining,
well, tricks! I’m learning Python on the job and I’m coming from pow-
ershell, which I learned on the job—so lots of new, great stuff. When-
ever I get stuck in Python (usuallywith flask blueprints or I feel likemy
code could be more Pythonic) I post questions in our internal Python
chat room.

I’m often amazed at some of the answers coworkers giveme. Dict com-
prehensions, lambdas, and generators often pepper their feedback. I
am always impressed and yet flabbergasted at how powerful Python
is when you know these tricks and can implement them correctly.

Your bookwas exactlywhat Iwanted to help getme fromabewildered
powershell scripter to someonewho knows how andwhen to use these
Pythonic ‘tricks’ everyone has been talking about.

As someone who doesn’t have my degree in CS it’s nice to have the text
to explain things that others might have learned when they were clas-
sically educated. I am really enjoying the book and am subscribed to
the emails as well, which is how I found out about the book.”

—Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

”I first heard about your book from a co-worker who wanted to
trick me with your example of how dictionaries are built. I was
almost 100% sure about the reason why the end product was a much
smaller/simpler dictionary but I must confess that I did not expect
the outcome :)

He showed me the book via video conferencing and I sort of skimmed
through it as he flipped the pages for me, and I was immediately curi-
ous to read more.

That same afternoon I purchasedmy own copy and proceeded to read
your explanation for the way dictionaries are created in Python and
later that day, as Imet a different co-worker for coffee, I used the same
trick on him :)

He then sprung a different question on the same principle, and be-
cause of the way you explained things in your book, I was able tonot*
guess the result but correctly answerwhat the outcomewould be. That
means that you did a great job at explaining things :)*

I am not new in Python and some of the concepts in some of the chap-
ters are not new to me, but I must say that I do get something out of
every chapter so far, so kudos for writing a very nice book and for do-
ing a fantastic job at explaining concepts behind the tricks! I’m very
much looking forward to the updates and Iwill certainly letmy friends
and co-workers know about your book.”

—OgMaciel, Python Developer at Red Hat

”I really enjoyed reading Dan’s book. He explains important Python
aspects with clear examples (using two twin cats to explain ‘is‘ vs ‘==‘
for example).

It is not just code samples, it discusses relevant implementation details
comprehensibly. What really matters though is that this book makes
you write better Python code!

The book is actually responsible for recent new good Python habits I
picked up, for example: using custom exceptions and ABC’s (I found
Dan’s blog searching for abstract classes.) These new learnings alone
are worth the price.”

— Bob Belderbos, Engineer at Oracle & Co-Founder of PyBites

Contents

Contents 6

Foreword 9

1 Introduction 11
1.1 What’s a Python Trick? 11
1.2 What This Book Will Do for You 13
1.3 How to Read This Book 14

2 Patterns for Cleaner Python 15
2.1 Covering Your A** With Assertions 16
2.2 Complacent Comma Placement 25
2.3 Context Managers and the with Statement 29
2.4 Underscores, Dunders, and More 36
2.5 A Shocking Truth About String Formatting 48
2.6 “The Zen of Python” Easter Egg 56

3 Effective Functions 57
3.1 Python’s Functions Are First-Class 58
3.2 Lambdas Are Single-Expression Functions 68
3.3 The Power of Decorators 73
3.4 Fun With *args and **kwargs 86
3.5 Function Argument Unpacking 91
3.6 Nothing to Return Here 94

6

Contents

4 Classes & OOP 97
4.1 Object Comparisons: “is” vs “==” 98
4.2 String Conversion (Every Class Needs a __repr__) . 101
4.3 Defining Your Own Exception Classes 111
4.4 Cloning Objects for Fun and Profit 116
4.5 Abstract Base Classes Keep Inheritance in Check . . . 124
4.6 What Namedtuples Are Good For 128
4.7 Class vs Instance Variable Pitfalls 136
4.8 Instance, Class, and Static Methods Demystified . . . 143

5 Common Data Structures in Python 153
5.1 Dictionaries, Maps, and Hashtables 156
5.2 Array Data Structures 163
5.3 Records, Structs, and Data Transfer Objects 173
5.4 Sets and Multisets 185
5.5 Stacks (LIFOs) . 189
5.6 Queues (FIFOs) . 195
5.7 Priority Queues . 201

6 Looping & Iteration 205
6.1 Writing Pythonic Loops 206
6.2 Comprehending Comprehensions 210
6.3 List Slicing Tricks and the Sushi Operator 214
6.4 Beautiful Iterators 218
6.5 Generators Are Simplified Iterators 231
6.6 Generator Expressions 239
6.7 Iterator Chains . 246

7 Dictionary Tricks 250
7.1 Dictionary Default Values 251
7.2 Sorting Dictionaries for Fun and Profit 255
7.3 Emulating Switch/Case Statements With Dicts 259
7.4 The Craziest Dict Expression in the West 264
7.5 So Many Ways to Merge Dictionaries 271
7.6 Dictionary Pretty-Printing 274

7

Contents

8 Pythonic Productivity Techniques 277
8.1 Exploring Python Modules and Objects 278
8.2 Isolating Project Dependencies With Virtualenv . . . 282
8.3 Peeking Behind the Bytecode Curtain 288

9 Closing Thoughts 293
9.1 Free Weekly Tips for Python Developers 295
9.2 PythonistaCafe: A Community for Python Developers 296

8

Foreword

It’s been almost ten years since I first got acquainted with Python as a
programming language. When I first learned Python many years ago,
it was with a little reluctance. I had been programming in a different
language before, and all of the sudden at work, I was assigned to a
different team where everyone used Python. That was the beginning
of my own Python journey.

When I was first introduced to Python, I was told that it was going to
be easy, that I should be able to pick it up quickly. When I asked my
colleagues for resources for learning Python, all they gave me was a
link to Python’s official documentation. Reading the documentation
was confusing at first, and it really took me a while before I even felt
comfortable navigating through it. Often I found myself needing to
look for answers in StackOverflow.

Coming from a different programming language, I wasn’t looking for
just any resource for learning how to program or what classes and
objects are. I was looking for specific resources that would teach me
the features of Python, what sets it apart, and how writing in Python
is different than writing code in another language.

It really has takenmemany years to fully appreciate this language. As
I read Dan’s book, I kept thinking that I wished I had access to a book
like this when I started learning Python many years ago.

For example, one of the many unique Python features that surprised
me at first were list comprehensions. As Dan mentions in the book,

9

Contents

a tell of someone who just came to Python from a different language
is the way they use for-loops. I recall one of the earliest code review
comments I got when I started programming in Python was, “Why
not use list comprehension here?” Dan explains this concept clearly
in section 6, starting by showing how to loop the Pythonic way and
building it all the way up to iterators and generators.

In chapter 2.5, Dan discusses the different ways to do string format-
ting in Python. String formatting is one of those things that defy the
Zen of Python, that there should only be one obvious way to do things.
Dan shows us the different ways, including my favorite new addition
to the language, the f-strings, and he also explains the pros and cons
of each method.

The Pythonic Productivity Techniques section is another great re-
source. It covers aspects beyond the Python programming language,
and also includes tips on how to debug your programs, how tomanage
the dependencies, and gives you a peek inside Python bytecode.

It truly is an honor and my pleasure to introduce this book, Python
Tricks, by my friend, Dan Bader.

By contributing to Python as a CPython core developer, I get con-
nected to many members of the community. In my journey, I found
mentors, allies, and made many new friends. They remind me that
Python is not just about the code, Python is a community.

Mastering Python programming isn’t just about grasping the theoreti-
cal aspects of the language. It’s just asmuch about understanding and
adopting the conventions and best practices used by its community.

Dan’s book will help you on this journey. I’m convinced that you’ll be
more confident when writing Python programs after reading it.

—Mariatta Wijaya, Python Core Developer (mariatta.ca)

10

Chapter 1

Introduction

1.1 What’s a Python Trick?
Python Trick: A short Python code snippet meant as a
teaching tool. A Python Trick either teaches an aspect of
Python with a simple illustration, or it serves as a moti-
vating example, enabling you to dig deeper and develop
an intuitive understanding.

Python Tricks started out as a short series of code screenshots that I
shared on Twitter for a week. To my surprise, they got rave responses
and were shared and retweeted for days on end.

More and more developers started asking me for a way to “get the
whole series.” Actually, I only had a few of these tricks lined up, span-
ning a variety of Python-related topics. There wasn’t a master plan
behind them. They were just a fun little Twitter experiment.

But from these inquiries I got the sense that my short-and-sweet code
exampleswould beworth exploring as a teaching tool. Eventually I set
out to create a few more Python Tricks and shared them in an email
series. Within a few days, several hundred Python developers had
signed up and I was just blown away by that response.

11

1.1. What’s a Python Trick?

Over the following days and weeks, a steady stream of Python devel-
opers reached out to me. They thanked me for making a part of the
language they were struggling to understand click for them. Hearing
this feedback felt awesome. I thought these Python Tricks were just
code screenshots, but so many developers were getting a lot of value
out of them.

That’s when I decided to double down on my Python Tricks experi-
ment and expanded it into a series of around 30 emails. Each of these
was still just a a headline and a code screenshot, and I soon realized
the limits of that format. Around this time, a blind Python developer
emailed me, disappointed to find that these Python Tricks were deliv-
ered as images he couldn’t read with his screen reader.

Clearly, I needed to invest more time into this project to make it
more appealing and more accessible to a wider audience. So, I sat
down to re-create the whole series of Python Tricks emails in plain
text and with proper HTML-based syntax highlighting. That new
iteration of Python Tricks chugged along nicely for a while. Based on
the responses I got, developers seemed happy they could finally copy
and paste the code samples in order to play around with them.

As more and more developers signed up for the email series, I started
noticing a pattern in the replies and questions I received. Some Tricks
worked well as motivational examples by themselves. However, for
the more complex ones there was no narrator to guide readers or to
give them additional resources to develop a deeper understanding.

Let’s just say this was another big area of improvement. My mission
statement for dbader.org is to help Python developers become more
awesome—and this was clearly an opportunity to get closer to that
goal.

I decided to take the best and most valuable Python Tricks from the
email course, and I started writing a new kind of Python book around
them:

12

1.2. What This Book Will Do for You

• A book that teaches the coolest aspects of the language with
short and easy-to-digest examples.

• A book that works like a buffet of awesome Python features
(yum!) and keeps motivation levels high.

• A book that takes you by the hand to guide you and help you
deepen your understanding of Python.

This book is really a labor of love for me and also a huge experiment. I
hope you’ll enjoy reading it and learn something about Python in the
process!

— Dan Bader

1.2 What This BookWill Do for You
My goal for this book is to make you a better—more effective, more
knowledgeable, more practical—Python developer. You might be
wondering, How will reading this book help me achieve all that?

Python Tricks is not a step-by-step Python tutorial. It is not an
entry-level Python course. If you’re in the beginning stages of learn-
ing Python, the book alone won’t transform you into a professional
Python developer. Reading it will still be beneficial to you, but you
need to make sure you’re working with some other resources to build
up your foundational Python skills.

You’ll get the most out of this book if you already have some knowl-
edge of Python, and youwant to get to the next level. It will work great
for you if you’ve been coding Python for a while and you’re ready to
go deeper, to round out your knowledge, and to make your code more
Pythonic.

Reading Python Tricks will also be great for you if you already have
experience with other programming languages and you’re looking to
get up to speed with Python. You’ll discover a ton of practical tips and
design patterns that’ll make you a more effective and skilled Python
coder.

13

1.3. How to Read This Book

1.3 How to Read This Book
The best way to read Python Tricks: The Book is to treat it like a buffet
of awesome Python features. Each Python Trick in the book is self-
contained, so it’s completely okay to jump straight to the ones that
look the most interesting. In fact, I would encourage you to do just
that.

Of course, you can also read through all the Python Tricks in the order
they’re laid out in the book. That way you won’t miss any of them, and
you’ll know you’ve seen it all when you arrive at the final page.

Some of these tricks will be easy to understand right away, and you’ll
have no trouble incorporating them into your day to day work just by
reading the chapter. Other tricks might require a bit more time to
crack.

If you’re having trouble making a particular trick work in your own
programs, it helps to play through each of the code examples in a
Python interpreter session.

If that doesn’t make things click, then please feel free to reach out to
me, so I can help you out and improve the explanation in this book.
In the long run, that benefits not just you but all Pythonistas reading
this book.

14

Chapter 2

Patterns for Cleaner Python

15

2.1. Covering Your A** With Assertions

2.1 Covering Your A** With Assertions
Sometimes a genuinely helpful language feature gets less attention
than it deserves. For some reason, this is what happened to Python’s
built-in assert statement.

In this chapter I’m going to give you an introduction to using asser-
tions in Python. You’ll learn how to use them to help automatically
detect errors in your Python programs. This will make your programs
more reliable and easier to debug.

At this point, you might be wondering “What are assertions and what
are they good for?” Let’s get you some answers for that.

At its core, Python’s assert statement is a debugging aid that tests a
condition. If the assert condition is true, nothing happens, and your
program continues to execute as normal. But if the condition evalu-
ates to false, an AssertionError exception is raised with an optional
error message.

Assert in Python — An Example
Here’s a simple example so you can see where assertions might come
in handy. I tried to give this some semblance of a real-world problem
you might actually encounter in one of your programs.

Suppose you were building an online store with Python. You’re work-
ing to add a discount coupon functionality to the system, and eventu-
ally you write the following apply_discount function:

def apply_discount(product, discount):

price = int(product['price'] * (1.0 - discount))

assert 0 <= price <= product['price']

return price

Notice the assert statement in there? It will guarantee that, no mat-
terwhat, discounted prices calculated by this function cannot be lower

16

2.1. Covering Your A** With Assertions

than $0 and they cannot be higher than the original price of the prod-
uct.

Let’s make sure this actually works as intended if we call this function
to apply a valid discount. In this example, products for our store will
be represented as plain dictionaries. This is probably not what you’d
do for a real application, but it’ll work nicely for demonstrating asser-
tions. Let’s create an example product—a pair of nice shoes at a price
of $149.00:

>>> shoes = {'name': 'Fancy Shoes', 'price': 14900}

By the way, did you notice how I avoided currency rounding issues
by using an integer to represent the price amount in cents? That’s
generally a good idea… But I digress. Now, if we apply a 25% discount
to these shoes, we would expect to arrive at a sale price of $111.75:

>>> apply_discount(shoes, 0.25)

11175

Alright, this worked nicely. Now, let’s try to apply some invalid dis-
counts. For example, a 200% “discount” that would lead to us giving
money to the customer:

>>> apply_discount(shoes, 2.0)

Traceback (most recent call last):

File "<input>", line 1, in <module>
apply_discount(prod, 2.0)

File "<input>", line 4, in apply_discount

assert 0 <= price <= product['price']

AssertionError

As you can see, when we try to apply this invalid discount, our
program halts with an AssertionError. This happens because a
discount of 200% violated the assertion condition we placed in the
apply_discount function.

17

2.1. Covering Your A** With Assertions

You can also see how the exception stacktrace points out the exact line
of code containing the failed assertion. If you (or another developer
on your team) ever encounter one of these errors while testing the
online store, it will be easy to find out what happened just by looking
at the exception traceback.

This speeds up debugging efforts considerably, and it will make your
programs more maintainable in the long-run. And that, my friend, is
the power of assertions.

Why Not Just Use a Regular Exception?
Now, you’re probably wondering why I didn’t just use an if-statement
and an exception in the previous example…

You see, the proper use of assertions is to inform developers about
unrecoverable errors in a program. Assertions are not intended to
signal expected error conditions, like a File-Not-Found error, where
a user can take corrective actions or just try again.

Assertions aremeant to be internal self-checks for your program. They
work by declaring some conditions as impossible in your code. If one
of these conditions doesn’t hold, that means there’s a bug in the pro-
gram.

If your program is bug-free, these conditions will never occur. But if
they do occur, the program will crash with an assertion error telling
you exactly which “impossible” condition was triggered. This makes
it much easier to track down and fix bugs in your programs. And I like
anything that makes life easier—don’t you?

For now, keep in mind that Python’s assert statement is a debugging
aid, not a mechanism for handling run-time errors. The goal of using
assertions is to let developers find the likely root cause of a bug more
quickly. An assertion error should never be raised unless there’s a bug
in your program.

Let’s take a closer look at some other things we can do with assertions,

18

2.1. Covering Your A** With Assertions

and then I’ll cover two commonpitfalls when using them in real-world
scenarios.

Python’s Assert Syntax
It’s always a good idea to study up on how a language feature is ac-
tually implemented in Python before you start using it. So let’s take
a quick look at the syntax for the assert statement, according to the
Python docs:1

assert_stmt ::= "assert" expression1 ["," expression2]

In this case, expression1 is the condition we test, and the optional
expression2 is an errormessage that’s displayed if the assertion fails.
At execution time, the Python interpreter transforms each assert state-
ment into roughly the following sequence of statements:

if __debug__:

if not expression1:

raise AssertionError(expression2)

Two interesting things about this code snippet:

Before the assert condition is checked, there’s an additional check for
the __debug__ global variable. It’s a built-in boolean flag that’s true
under normal circumstances and false if optimizations are requested.
We’ll talk somemore about later that in the “common pitfalls” section.

Also, you can use expression2 to pass an optional error message that
will be displayed with the AssertionError in the traceback. This can
simplify debugging even further. For example, I’ve seen code like this:

>>> if cond == 'x':

... do_x()

1cf. Python Docs: “The Assert Statement”

19

2.1. Covering Your A** With Assertions

... elif cond == 'y':

... do_y()

... else:

... assert False, (

... 'This should never happen, but it does '

... 'occasionally. We are currently trying to '

... 'figure out why. Email dbader if you '

... 'encounter this in the wild. Thanks!')

Is this ugly? Well, yes. But it’s definitely a valid and helpful technique
if you’re faced with a Heisenbug2 in one of your applications.

Common Pitfalls With Using Asserts in Python
Before you move on, there are two important caveats regarding the
use of assertions in Python that I’d like to call out.

The first one has to do with introducing security risks and bugs into
your applications, and the second one is about a syntax quirk that
makes it easy to write useless assertions.

This sounds (and potentially is) quite horrible, so you should probably
at least skim these two caveats below.

Caveat #1 – Don’t Use Asserts for Data Validation
The biggest caveat with using asserts in Python is that assertions can
be globally disabled3 with the -O and -OO command line switches, as
well as the PYTHONOPTIMIZE environment variable in CPython.

This turns any assert statement into a null-operation: the assertions
simply get compiled away and won’t be evaluated, which means that
none of the conditional expressions will be executed.

2cf. Wikipedia: Heisenbug
3cf. Python Docs: “Constants (__debug__)”

20

2.1. Covering Your A** With Assertions

This is an intentional design decision used similarly by many other
programming languages. As a side-effect, it becomes extremely dan-
gerous to use assert statements as a quick and easy way to validate
input data.

Let me explain—if your program uses asserts to check if a function
argument contains a “wrong” or unexpected value, this can backfire
quickly and lead to bugs or security holes.

Let’s take a look at a simple example that demonstrates this prob-
lem. Again, imagine you’re building an online store application with
Python. Somewhere in your application code there’s a function to
delete a product as per a user’s request.

Because you just learned about assertions, you’re eager to use them
in your code (hey, I know I would be!) and you write the following
implementation:

def delete_product(prod_id, user):

assert user.is_admin(), 'Must be admin'

assert store.has_product(prod_id), 'Unknown product'

store.get_product(prod_id).delete()

Take a close look at this delete_product function. Now, what’s going
to happen if assertions are disabled?

There are two serious issues in this three-line function example, and
they’re caused by the incorrect use of assert statements:

1. Checking for admin privileges with an assert state-
ment is dangerous. If assertions are disabled in the Python
interpreter, this turns into a null-op. Therefore any user can
now delete products. The privileges check doesn’t even run.
This likely introduces a security problem and opens the door
for attackers to destroy or severely damage the data in our
online store. Not good.

21

2.1. Covering Your A** With Assertions

2. The has_product() check is skipped when assertions
are disabled. This means get_product() can now be called
with invalid product IDs—which could lead to more severe
bugs, depending on how our program is written. In the worst
case, this could be an avenue for someone to launch Denial of
Service attacks against our store. For example, if the store app
crashes if someone attempts to delete an unknown product,
an attacker could bombard it with invalid delete requests and
cause an outage.

How might we avoid these problems? The answer is to never use as-
sertions to do data validation. Instead, we could do our validation
with regular if-statements and raise validation exceptions if neces-
sary, like so:

def delete_product(product_id, user):

if not user.is_admin():

raise AuthError('Must be admin to delete')

if not store.has_product(product_id):

raise ValueError('Unknown product id')

store.get_product(product_id).delete()

This updated example also has the benefit that instead of raising un-
specific AssertionError exceptions, it now raises semantically cor-
rect exceptions like ValueError or AuthError (which we’d have to
define ourselves.)

Caveat #2 – Asserts That Never Fail
It’s surprisingly easy to accidentally write Python assert statements
that always evaluate to true. I’ve been bitten by this myself in the past.
Here’s the problem, in a nutshell:

When you pass a tuple as the first argument in an assert statement,
the assertion always evaluates as true and therefore never fails.

22

2.1. Covering Your A** With Assertions

For example, this assertion will never fail:

assert(1 == 2, 'This should fail')

This has to dowith non-empty tuples always being truthy in Python. If
you pass a tuple to an assert statement, it leads to the assert condition
always being true—which in turn leads to the above assert statement
being useless because it can never fail and trigger an exception.

It’s relatively easy to accidentally write bad multi-line asserts due to
this, well, unintuitive behavior. For example, I merrily wrote a bunch
of broken test cases that gave a false sense of security in one of my test
suites. Imagine you had this assertion in one of your unit tests:

assert (

counter == 10,

'It should have counted all the items'

)

Upon first inspection, this test case looks completely fine. However, it
would never catch an incorrect result: the assertion always evaluates
to True, regardless of the state of the counter variable. And why is
that? Because it asserts the truth value of a tuple object.

Like I said, it’s rather easy to shoot yourself in the foot with this (mine
still hurts). A good countermeasure you can apply to prevent this syn-
tax quirk from causing trouble is to use a code linter.4 Newer versions
of Python 3 will also show a syntax warning for these dubious asserts.

By the way, that’s also why you should always do a quick smoke test
with your unit test cases. Make sure they can actually fail before you
move on to writing the next one.

4I wrote an article about avoiding bogus assertions in your Python tests. You
can find it here: dbader.org/blog/catching-bogus-python-asserts.

23

2.1. Covering Your A** With Assertions

Python Assertions — Summary
Despite these caveats I believe that Python’s assertions are a powerful
debugging tool that’s frequently underused by Python developers.

Understanding how assertions work andwhen to apply them can help
you write Python programs that are more maintainable and easier to
debug.

It’s a great skill to learn that will help bring your Python knowledge to
the next level and make you a more well-rounded Pythonista. I know
it has saved me hours upon hours of debugging.

Key Takeaways
• Python’s assert statement is a debugging aid that tests a condi-
tion as an internal self-check in your program.

• Asserts should only be used to help developers identify bugs.
They’re not a mechanism for handling run-time errors.

• Asserts can be globally disabled with an interpreter setting.

24

2.2. Complacent Comma Placement

2.2 Complacent Comma Placement
Here’s a handy tip for when you’re adding and removing items from
a list, dict, or set constant in Python: Just end all of your lines with a
comma.

Not sure what I’m talking about? Let me give you a quick example.
Imagine you’ve got this list of names in your code:

>>> names = ['Alice', 'Bob', 'Dilbert']

Whenever you make a change to this list of names, it’ll be hard to tell
what was modified by looking at a Git diff, for example. Most source
control systems are line-based and have a hard time highlightingmul-
tiple changes to a single line.

A quick fix for that is to adopt a code style where you spread out list,
dict, or set constants across multiple lines, like so:

>>> names = [

... 'Alice',

... 'Bob',

... 'Dilbert'

...]

That way there’s one item per line, making it perfectly clear which one
was added, removed, or modified when you view a diff in your source
control system. It’s a small change but I found it helpedme avoid silly
mistakes. It also made it easier for my teammates to review my code
changes.

Now, there are two editing cases that can still cause some confusion.
Whenever you add a new item at the end of a list, or you remove the
last item, you’ll have to update the comma placement manually to get
consistent formatting.

25

2.2. Complacent Comma Placement

Let’s say you’d like to add another name (Jane) to that list. If you add
Jane, you’ll need to fix the comma placement after the Dilbert line to
avoid a nasty error:

>>> names = [

... 'Alice',

... 'Bob',

... 'Dilbert' # <- Missing comma!

... 'Jane'

]

When you inspect the contents of that list, brace yourself for a sur-
prise:

>>> names

['Alice', 'Bob', 'DilbertJane']

As you can see, Python merged the strings Dilbert and Jane into Dil-
bertJane. This so-called “string literal concatenation” is intentional
and documented behavior. And it’s also a fantastic way to shoot your-
self in the foot by introducing hard-to-catch bugs into your programs:

“Multiple adjacent string or bytes literals (delimited by
whitespace), possibly using different quoting conven-
tions, are allowed, and their meaning is the same as
their concatenation.”5

Still, string literal concatenation is a useful feature in some cases. For
example, you can use it to reduce the number of backslashes needed
to split long string constants across multiple lines:

5cf. Python Docs: “String literal concatenation”

26

2.2. Complacent Comma Placement

my_str = ('This is a super long string constant '

'spread out across multiple lines. '

'And look, no backslash characters needed!')

On the other hand, we’ve just seen how the same feature can quickly
turn into a liability. Now, how do we fix this situation?

Adding themissing comma afterDilbert prevents the two strings from
getting merged into one:

>>> names = [

... 'Alice',

... 'Bob',

... 'Dilbert',

... 'Jane'

]

But now we’ve come full circle and returned to the original problem.
I had to modify two lines in order to add a new name to the list. This
makes it harder to see what was modified in the Git diff again… Did
someone add a new name? Did someone change Dilbert’s name?

Luckily, Python’s syntax allows for some leeway to solve this comma
placement issue once and for all. You just need to train yourself to
adopt a code style that avoids it in the first place. Let me show you
how.

In Python, you can place a comma after every item in a list, dict, or set
constant, including the last item. That way, you can just remember
to always end your lines with a comma and thus avoid the comma
placement juggling that would otherwise be required.

Here’s what the final example looks like:

>>> names = [

... 'Alice',

27

2.2. Complacent Comma Placement

... 'Bob',

... 'Dilbert',

...]

Did you spot the comma after Dilbert? That’ll make it easy to add or
remove new items without having to update the comma placement. It
keeps your lines consistent, your source control diffs clean, and your
code reviewers happy. Hey, sometimes themagic is in the little things,
right?

Key Takeaways
• Smart formatting and comma placement can make your list,
dict, or set constants easier to maintain.

• Python’s string literal concatenation feature can work to your
benefit, or introduce hard-to-catch bugs.

28

2.3. Context Managers and the with Statement

2.3 Context Managers and the with
Statement

The with statement in Python is regarded as an obscure feature by
some. But when you peek behind the scenes, you’ll see that there’s no
magic involved, and it’s actually a highly useful feature that can help
you write cleaner and more readable Python code.

So what’s the with statement good for? It helps simplify some com-
mon resourcemanagement patterns by abstracting their functionality
and allowing them to be factored out and reused.

A good way to see this feature used effectively is by looking at exam-
ples in the Python standard library. The built-in open() function pro-
vides us with an excellent use case:

with open('hello.txt', 'w') as f:

f.write('hello, world!')

Opening files using the with statement is generally recommended be-
cause it ensures that open file descriptors are closed automatically af-
ter program execution leaves the context of the with statement. Inter-
nally, the above code sample translates to something like this:

f = open('hello.txt', 'w')

try:
f.write('hello, world')

finally:
f.close()

You can already tell that this is quite a bit more verbose. Note that
the try...finally statement is significant. It wouldn’t be enough to
just write something like this:

29

2.3. Context Managers and the with Statement

f = open('hello.txt', 'w')

f.write('hello, world')

f.close()

This implementation won’t guarantee the file is closed if there’s an ex-
ception during the f.write() call—and therefore our programmight
leak a file descriptor. That’s why the with statement is so useful. It
makes properly acquiring and releasing resources a breeze.

Another good example where the with statement is used effectively in
the Python standard library is the threading.Lock class:

some_lock = threading.Lock()

Harmful:

some_lock.acquire()

try:
Do something...

finally:
some_lock.release()

Better:

with some_lock:

Do something...

In both cases, using a with statement allows you to abstract awaymost
of the resource handling logic. Instead of having to write an explicit
try...finally statement each time, using the with statement takes
care of that for us.

The with statement can make code that deals with system resources
more readable. It also helps you avoid bugs or leaks bymaking it prac-
tically impossible to forget to clean up or release a resource when it’s
no longer needed.

30

2.3. Context Managers and the with Statement

Supporting with in Your Own Objects
Now, there’s nothing special or magical about the open() function or
the threading.Lock class and the fact that they can be used with a
with statement. You can provide the same functionality in your own
classes and functions by implementing so-called context managers.6

What’s a context manager? It’s a simple “protocol” (or interface) that
your object needs to follow in order to support the with statement.
Basically, all you need to do is add __enter__ and __exit__methods
to an object if you want it to function as a context manager. Python
will call these two methods at the appropriate times in the resource
management cycle.

Let’s take a look at what this would look like in practical terms. Here’s
what a simple implementation of the open() context manager might
look like:

class ManagedFile:

def __init__(self, name):

self.name = name

def __enter__(self):

self.file = open(self.name, 'w')

return self.file

def __exit__(self, exc_type, exc_val, exc_tb):

if self.file:

self.file.close()

Our ManagedFile class follows the contextmanager protocol and now
supports the with statement, just like the original open() example
did:

6cf. Python Docs: “With Statement Context Managers”

31

2.3. Context Managers and the with Statement

>>> with ManagedFile('hello.txt') as f:

... f.write('hello, world!')

... f.write('bye now')

Python calls __enter__ when execution enters the context of the
with statement and it’s time to acquire the resource. When execu-
tion leaves the context again, Python calls __exit__ to free up the
resource.

Writing a class-based context manager isn’t the only way to support
the with statement in Python. The contextlib7 utility module in the
standard library provides a few more abstractions built on top of the
basic context manager protocol. This can make your life a little easier
if your use cases match what’s offered by contextlib.

For example, you can use the contextlib.contextmanager decora-
tor to define a generator-based factory function for a resource thatwill
then automatically support the with statement. Here’s what rewriting
our ManagedFile context manager example with this technique looks
like:

from contextlib import contextmanager

@contextmanager

def managed_file(name):

try:
f = open(name, 'w')

yield f

finally:
f.close()

>>> with managed_file('hello.txt') as f:

... f.write('hello, world!')

... f.write('bye now')

7cf. Python Docs: “contextlib”

32

2.3. Context Managers and the with Statement

In this case, managed_file() is a generator that first acquires the
resource. After that, it temporarily suspends its own execution and
yields the resource so it can be used by the caller. When the caller
leaves the with context, the generator continues to execute so that any
remaining clean-up steps can occur and the resource can get released
back to the system.

The class-based implementation and the generator-based one are es-
sentially equivalent. You might prefer one over the other, depending
on which approach you find more readable.

A downside of the @contextmanager-based implementationmight be
that it requires some understanding of advanced Python concepts like
decorators and generators. If you need to get up to speed with those,
feel free to take a detour to the relevant chapters here in this book.

Once again, making the right implementation choice here comes
down to what you and your team are comfortable using and what you
find the most readable.

Writing Pretty APIs With Context Managers
Context managers are quite flexible, and if you use the with state-
ment creatively, you can define convenient APIs for yourmodules and
classes.

For example, what if the “resource” we wanted to manage was text
indentation levels in some kind of report generator program? What if
we could write code like this to do it:

with Indenter() as indent:

indent.print('hi!')

with indent:

indent.print('hello')

with indent:

indent.print('bonjour')

indent.print('hey')

33

2.3. Context Managers and the with Statement

This almost reads like a domain-specific language (DSL) for indent-
ing text. Also, notice how this code enters and leaves the same con-
text manager multiple times to change indentation levels. Running
this code snippet should lead to the following output and print neatly
formatted text to the console:

hi!

hello

bonjour

hey

So, howwould you implement a context manager to support this func-
tionality?

By theway, this could be a great exercise for you to understand exactly
how context managers work. So before you check out my implemen-
tation below, you might want to take some time and try to implement
this yourself as a learning exercise.

If you’re ready to check outmy implementation, here’s how youmight
implement this functionality using a class-based context manager:

class Indenter:

def __init__(self):

self.level = 0

def __enter__(self):

self.level += 1

return self

def __exit__(self, exc_type, exc_val, exc_tb):

self.level -= 1

def print(self, text):

print(' ' * self.level + text)

34

2.3. Context Managers and the with Statement

That wasn’t so bad, was it? I hope that by now you’re already feeling
more comfortable using context managers and the with statement in
your own Python programs. They’re an excellent feature that will al-
low you to deal with resource management in a much more Pythonic
and maintainable way.

If you’re looking for another exercise to deepen your understanding,
try implementing a contextmanager thatmeasures the execution time
of a code block using the time.time function. Be sure to try out writ-
ing both a decorator-based and a class-based variant to drive home
the difference between the two.

Key Takeaways
• The with statement simplifies exception handling by encapsu-
lating standard uses of try/finally statements in so-called
context managers.

• Most commonly it is used to manage the safe acquisition and
release of system resources. Resources are acquired by the
with statement and released automatically when execution
leaves the with context.

• Using with effectively can help you avoid resource leaks and
make your code easier to read.

35

2.4. Underscores, Dunders, and More

2.4 Underscores, Dunders, and More
Single and double underscores have ameaning in Python variable and
method names. Some of that meaning is merely by convention and
intended as a hint to the programmer—and some of it is enforced by
the Python interpreter.

If you’re wondering, “What’s the meaning of single and double under-
scores in Python variable and method names?” I’ll do my best to get
you the answer here. In this chapter we’ll discuss the following five
underscore patterns and naming conventions, and how they affect the
behavior of your Python programs:

• Single Leading Underscore: _var
• Single Trailing Underscore: var_
• Double Leading Underscore: __var
• Double Leading and Trailing Underscore: __var__
• Single Underscore: _

1. Single Leading Underscore: “_var”
When it comes to variable and method names, the single under-
score prefix has a meaning by convention only. It’s a hint to the
programmer—it means what the Python community agrees it should
mean, but it does not affect the behavior of your programs.

The underscore prefix is meant as a hint to tell another programmer
that a variable ormethod startingwith a single underscore is intended
for internal use. This convention is defined in PEP 8, the most com-
monly used Python code style guide.8

However, this convention isn’t enforced by the Python interpreter.
Python does not have strong distinctions between “private” and
“public” variables like Java does. Adding a single underscore in front
of a variable name is more like someone putting up a tiny underscore

8cf. PEP 8: “Style Guide for Python Code”

36

2.4. Underscores, Dunders, and More

warning sign that says: “Hey, this isn’t really meant to be a part of the
public interface of this class. Best to leave it alone.”

Take a look at the following example:

class Test:

def __init__(self):

self.foo = 11

self._bar = 23

What’s going to happen if you instantiate this class and try to access
the foo and _bar attributes defined in its __init__ constructor?

Let’s find out:

>>> t = Test()

>>> t.foo

11

>>> t._bar

23

As you can see, the leading single underscore in _bar did not prevent
us from “reaching into” the class and accessing the value of that vari-
able.

That’s because the single underscore prefix in Python is merely an
agreed-upon convention—at least when it comes to variable and
method names. However, leading underscores do impact how names
get imported from modules. Imagine you had the following code in a
module called my_module:

my_module.py:

def external_func():

return 23

37

2.4. Underscores, Dunders, and More

def _internal_func():

return 42

Now, if you use a wildcard import to import all the names from the
module, Python will not import names with a leading underscore (un-
less the module defines an __all__ list that overrides this behavior9):

>>> from my_module import *
>>> external_func()

23

>>> _internal_func()

NameError: "name '_internal_func' is not defined"

By the way, wildcard imports should be avoided as they make it un-
clear which names are present in the namespace.10 It’s better to stick
to regular imports for the sake of clarity. Unlikewildcard imports, reg-
ular imports are not affected by the leading single underscore naming
convention:

>>> import my_module

>>> my_module.external_func()

23

>>> my_module._internal_func()

42

I know this might be a little confusing at this point. If you stick to
the PEP 8 recommendation that wildcard imports should be avoided,
then all you really need to remember is this:

Single underscores are a Python naming convention that indicates a
name is meant for internal use. It is generally not enforced by the
Python interpreter and is only meant as a hint to the programmer.

9cf. Python Docs: “Importing * From a Package”
10cf. PEP 8: “Imports”

38

2.4. Underscores, Dunders, and More

2. Single Trailing Underscore: “var_”
Sometimes the most fitting name for a variable is already taken by a
keyword in the Python language. Therefore, names like class or def
cannot be used as variable names in Python. In this case, you can
append a single underscore to break the naming conflict:

>>> def make_object(name, class):
SyntaxError: "invalid syntax"

>>> def make_object(name, class_):

... pass

In summary, a single trailing underscore (postfix) is used by conven-
tion to avoid naming conflicts with Python keywords. This convention
is defined and explained in PEP 8.

3. Double Leading Underscore: “__var”
The naming patterns we’ve covered so far receive their meaning from
agreed-upon conventions only. With Python class attributes (vari-
ables and methods) that start with double underscores, things are a
little different.

A double underscore prefix causes the Python interpreter to rewrite
the attribute name in order to avoid naming conflicts in subclasses.

This is also called name mangling—the interpreter changes the name
of the variable in a way that makes it harder to create collisions when
the class is extended later.

I know this sounds rather abstract. That’s why I put together this little
code example we can use for experimentation:

class Test:

def __init__(self):

self.foo = 11

39

2.4. Underscores, Dunders, and More

self._bar = 23

self.__baz = 23

Let’s take a look at the attributes on this object using the built-in dir()
function:

>>> t = Test()

>>> dir(t)

['_Test__baz', '__class__', '__delattr__', '__dict__',

'__dir__', '__doc__', '__eq__', '__format__', '__ge__',

'__getattribute__', '__gt__', '__hash__', '__init__',

'__le__', '__lt__', '__module__', '__ne__', '__new__',

'__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__',

'__subclasshook__', '__weakref__', '_bar', 'foo']

This gives us a list with the object’s attributes. Let’s take this list and
look for our original variable names foo, _bar, and __baz. I promise
you’ll notice some interesting changes.

First of all, the self.foo variable appears unmodified as foo in the
attribute list.

Next up, self._bar behaves the same way—it shows up on the class
as _bar. Like I said before, the leading underscore is just a convention
in this case—a hint for the programmer.

However, with self.__baz things look a little different. When you
search for __baz in that list, you’ll see that there is no variable with
that name.

So what happened to __baz?

If you look closely, you’ll see there’s an attribute called _Test__baz

on this object. This is the name mangling that the Python interpreter
applies. It does this to protect the variable from getting overridden in
subclasses.

40

2.4. Underscores, Dunders, and More

Let’s create another class that extends the Test class and attempts to
override its existing attributes added in the constructor:

class ExtendedTest(Test):

def __init__(self):

super().__init__()

self.foo = 'overridden'

self._bar = 'overridden'

self.__baz = 'overridden'

Now, what do you think the values of foo, _bar, and __baz will be on
instances of this ExtendedTest class? Let’s take a look:

>>> t2 = ExtendedTest()

>>> t2.foo

'overridden'

>>> t2._bar

'overridden'

>>> t2.__baz

AttributeError:

"'ExtendedTest' object has no attribute '__baz'"

Wait, why did we get that AttributeError when we tried to inspect
the value of t2.__baz? Name mangling strikes again! It turns out
this object doesn’t even have a __baz attribute:

>>> dir(t2)

['_ExtendedTest__baz', '_Test__baz', '__class__',

'__delattr__', '__dict__', '__dir__', '__doc__',

'__eq__', '__format__', '__ge__', '__getattribute__',

'__gt__', '__hash__', '__init__', '__le__', '__lt__',

'__module__', '__ne__', '__new__', '__reduce__',

'__reduce_ex__', '__repr__', '__setattr__',

'__sizeof__', '__str__', '__subclasshook__',

'__weakref__', '_bar', 'foo', 'get_vars']

41

2.4. Underscores, Dunders, and More

As you can see, __baz got turned into _ExtendedTest__baz to pre-
vent accidental modification. But the original _Test__baz is also still
around:

>>> t2._ExtendedTest__baz

'overridden'

>>> t2._Test__baz

42

Double underscore name mangling is fully transparent to the pro-
grammer. Take a look at the following example that will confirm
this:

class ManglingTest:

def __init__(self):

self.__mangled = 'hello'

def get_mangled(self):

return self.__mangled

>>> ManglingTest().get_mangled()

'hello'

>>> ManglingTest().__mangled

AttributeError:

"'ManglingTest' object has no attribute '__mangled'"

Does name mangling also apply to method names? It sure does!
Name mangling affects all names that start with two underscore
characters (“dunders”) in a class context:

class MangledMethod:

def __method(self):

return 42

def call_it(self):

42

2.4. Underscores, Dunders, and More

return self.__method()

>>> MangledMethod().__method()

AttributeError:

"'MangledMethod' object has no attribute '__method'"

>>> MangledMethod().call_it()

42

Here’s another, perhaps surprising, example of name mangling in ac-
tion:

_MangledGlobal__mangled = 23

class MangledGlobal:

def test(self):

return __mangled

>>> MangledGlobal().test()

23

In this example, I declared _MangledGlobal__mangled as a global
variable. Then I accessed the variable inside the context of a class
named MangledGlobal. Because of name mangling, I was able to
reference the _MangledGlobal__mangled global variable as just
__mangled inside the test()method on the class.

The Python interpreter automatically expanded the name __mangled
to _MangledGlobal__mangled because it begins with two underscore
characters. This demonstrates that name mangling isn’t tied to class
attributes specifically. It applies to any name starting with two under-
score characters that is used in a class context.

Whew! That was a lot to absorb.

To be honest with you, I didn’t write down these examples and expla-
nations off the top of my head. It took me some research and editing

43

2.4. Underscores, Dunders, and More

to do it. I’ve been using Python for years but rules and special cases
like that aren’t constantly on my mind.

Sometimes the most important skills for a programmer are “pattern
recognition” and knowing where to look things up. If you feel a little
overwhelmed at this point, don’t worry. Take your time and play with
some of the examples in this chapter.

Let these concepts sink in enough so that you’ll recognize the general
idea of name mangling and some of the other behaviors I’ve shown
you. If you encounter them “in the wild” one day, you’ll know what to
look for in the documentation.

Sidebar: What are dunders?
If you’ve heard some experienced Pythonistas talk about Python or
watched a few conference talks you may have heard the term dunder.
If you’re wondering what that is, well, here’s your answer:

Double underscores are often referred to as “dunders” in the Python
community. The reason is that double underscores appear quite often
in Python code, and to avoid fatiguing their jaw muscles, Pythonistas
often shorten “double underscore” to “dunder.”

For example, you’d pronounce __baz as “dunder baz.” Likewise,
__init__ would be pronounced as “dunder init,” even though one
might think it should be “dunder init dunder.”

But that’s just yet another quirk in the naming convention. It’s like a
secret handshake for Python developers.

4. Double Leading and Trailing Underscore:
“__var__”
Perhaps surprisingly, name mangling is not applied if a name starts
and endswith double underscores. Variables surrounded by a double
underscore prefix and postfix are left unscathed by the Python inter-
preter:

44

2.4. Underscores, Dunders, and More

class PrefixPostfixTest:

def __init__(self):

self.__bam__ = 42

>>> PrefixPostfixTest().__bam__

42

However, names that have both leading and trailing double under-
scores are reserved for special use in the language. This rule covers
things like __init__ for object constructors, or __call__ to make ob-
jects callable.

These dunder methods are often referred to as magic methods—but
many people in the Python community, including myself, don’t like
that word. It implies that the use of dunder methods is discouraged,
which is entirely not the case. They’re a core feature in Python and
should be used as needed. There’s nothing “magical” or arcane about
them.

However, as far as naming conventions go, it’s best to stay away from
using names that start and end with double underscores in your own
programs to avoid collisions with future changes to the Python lan-
guage.

5. Single Underscore: “_”
Per convention, a single stand-alone underscore is sometimes used as
a name to indicate that a variable is temporary or insignificant.

For example, in the following loopwe don’t need access to the running
index and we can use “_” to indicate that it is just a temporary value:

>>> for _ in range(32):

... print('Hello, World.')

You can also use single underscores in unpacking expressions as a

45

2.4. Underscores, Dunders, and More

“don’t care” variable to ignore particular values. Again, this meaning
is per convention only and it doesn’t trigger any special behaviors in
the Python parser. The single underscore is simply a valid variable
name that’s sometimes used for this purpose.

In the following code example, I’m unpacking a tuple into separate
variables but I’m only interested in the values for the color and
mileage fields. However, in order for the unpacking expression to
succeed, I need to assign all values contained in the tuple to variables.
That’s where “_” is useful as a placeholder variable:

>>> car = ('red', 'auto', 12, 3812.4)

>>> color, _, _, mileage = car

>>> color

'red'

>>> mileage

3812.4

>>> _

12

Besides its use as a temporary variable, “_” is a special variable inmost
Python REPLs that represents the result of the last expression evalu-
ated by the interpreter.

This is handy if you’re working in an interpreter session and you’d like
to access the result of a previous calculation:

>>> 20 + 3

23

>>> _

23

>>> print(_)

23

It’s also handy if you’re constructing objects on the fly and want to
interact with them without assigning them a name first:

46

2.4. Underscores, Dunders, and More

>>> list()

[]

>>> _.append(1)

>>> _.append(2)

>>> _.append(3)

>>> _

[1, 2, 3]

Key Takeaways
• Single Leading Underscore “_var”: Naming convention in-
dicating a name is meant for internal use. Generally not en-
forced by the Python interpreter (except in wildcard imports)
and meant as a hint to the programmer only.

• Single Trailing Underscore “var_”: Used by convention to
avoid naming conflicts with Python keywords.

• Double Leading Underscore “__var”: Triggers name man-
gling when used in a class context. Enforced by the Python in-
terpreter.

• Double Leading and Trailing Underscore “__var__”: In-
dicates special methods defined by the Python language. Avoid
this naming scheme for your own attributes.

• Single Underscore “_”: Sometimes used as a name for tem-
porary or insignificant variables (“don’t care”). Also, it repre-
sents the result of the last expression in a Python REPL session.

47

2.5. A Shocking Truth About String Formatting

2.5 A Shocking Truth About String
Formatting

Remember the Zen of Python and how there should be “one obvious
way to do something?” You might scratch your head when you find
out that there are fourmajor ways to do string formatting in Python.

In this chapter I’ll demonstrate how these four string formatting ap-
proaches work and what their respective strengths and weaknesses
are. I’ll also give you my simple “rule of thumb” for how I pick the
best general-purpose string formatting approach.

Let’s jump right in, aswe’ve got a lot to cover. In order to have a simple
toy example for experimentation, let’s assume we’ve got the following
variables (or constants, really) to work with:

>>> errno = 50159747054

>>> name = 'Bob'

And based on these variables we’d like to generate an output string
with the following error message:

'Hey Bob, there is a 0xbadc0ffee error!'

Now, that error could really spoil a dev’s Monday morning! But we’re
here to discuss string formatting today. So let’s get to work.

#1 – “Old Style” String Formatting
Strings in Python have a unique built-in operation that can be
accessed with the %-operator. It’s a shortcut that lets you do simple
positional formatting very easily. If you’ve ever worked with a
printf-style function in C, you’ll instantly recognize how this works.
Here’s a simple example:

48

2.5. A Shocking Truth About String Formatting

>>> 'Hello, %s' % name

'Hello, Bob'

I’m using the %s format specifier here to tell Python where to substi-
tute the value of name, represented as a string. This is called “old style”
string formatting.

In old style string formatting there are also other format specifiers
available that let you control the output string. For example, it’s possi-
ble to convert numbers to hexadecimal notation or to add whitespace
padding to generate nicely formatted tables and reports.11

Here, I’m using the %x format specifier to convert an int value to a
string and to represent it as a hexadecimal number:

>>> '%x' % errno

'badc0ffee'

The “old style” string formatting syntax changes slightly if you want to
makemultiple substitutions in a single string. Because the %-operator
only takes one argument, you need to wrap the right-hand side in a
tuple, like so:

>>> 'Hey %s, there is a 0x%x error!' % (name, errno)

'Hey Bob, there is a 0xbadc0ffee error!'

It’s also possible to refer to variable substitutions by name in your
format string, if you pass a mapping to the %-operator:

>>> 'Hey %(name)s, there is a 0x%(errno)x error!' % {

... "name": name, "errno": errno }

'Hey Bob, there is a 0xbadc0ffee error!'

11cf. Python Docs: “printf-style String Formatting”

49

	Contents
	Foreword
	Introduction
	What's a Python Trick?
	What This Book Will Do for You
	How to Read This Book

	Patterns for Cleaner Python
	Covering Your A** With Assertions
	Complacent Comma Placement
	Context Managers and the with Statement
	Underscores, Dunders, and More
	A Shocking Truth About String Formatting

