

Contents
What you can find inside the bookazine

Code
& create

with
Python!

6

7

120 Find and check
your phone
Discover and log
Bluetooth devices

110 Handle multiple task
Learn to multi-task with
your Raspberry Pi

100 Using Python on Pi
Optimise your code

114 Create a Pi-powered
virtual reality setup
Use Python-VRZero

106 Use Python in Minecraft
Produce fantastic creations

72 Scrape Wikipedia
Start using Beautiful Soup

26 Make web apps
 Master this starter project

 32 Build an app for Android
Take your apps on the move

50 Replace your shell
Say goodbye to Bash

58 Scientific computing
Discover NumPy’s power

64 Python for system admins
How to tweak your settings

Introducing Python

Work with Python

86 Make a Pong clone
Enhance your game skills

88 Program a Space
Invaders clone
Have fun with Pivaders

94 Space Invaders clone 2
Continue making Pivaders

Use Python with Pi

8 Masterclass
Discover the basics of Python

Python
with

Get started

40 50 Python tips
 A selection of handy tips

Create with Python

80 Tic-tac-toe with Kivy
Program a simple game

Python
Always wanted to have a go at programming? No more
excuses, because Python is the perfect way to get started!

Python is a great programming language for both beginners and experts. It

is designed with code readability in mind, making it an excellent choice for

beginners who are still getting used to various programming concepts.

The language is popular and has plenty of libraries available, allowing

programmers to get a lot done with relatively little code.

You can make all kinds of applications in Python: you could use the

Pygame framework to write simple 2D games, you could use the GTK

libraries to create a windowed application, or you could try something

a little more ambitious like an app such as creating one using Python’s

Bluetooth and Input libraries to capture the input from a USB keyboard and

relay the input events to an Android phone.

For this tutorial we’re going to be using Python 2.x since that is the

version that is most likely to be installed on your Linux distribution.

In the following tutorials, you’ll learn how to create popular games using

Python programming. We’ll also show you how to add sound and AI to

these games.

Get started
with

8

Getting startedGet started with Python

9

10

Hello World

Let’s get stuck in, and what better way than with the programmer’s

best friend, the ‘Hello World’ application! Start by opening a terminal.

Its current working directory will be your home directory. It’s probably

a good idea to make a directory for the files that we’ll be creating in

this tutorial, rather than having them loose in your home directory.

You can create a directory called Python using the command mkdir

Python. You’ll then want to change into that directory using the

command cd Python.

The next step is to create an empty file using the command ‘touch’

followed by the filename. Our expert used the command touch

hello_world.py. The final and most important part of setting up the

file is making it executable. This allows us to run code inside the hello_

world.py file. We do this with the command chmod +x hello_world.

py. Now that we have our file set up, we can go ahead and open it up

in nano, or alternatively any text editor of your choice. Gedit is a great

editor with syntax highlighting support that should be available on any

distribution. You’ll be able to install it using your package manager if

you don’t have it already.

 [liam@liam-laptop ~]$ mkdir Python

 [liam@liam-laptop ~]$ cd Python/

 [liam@liam-laptop Python]$ touch hello_world.py

 [liam@liam-laptop Python]$ chmod +x hello_world.py

 [liam@liam-laptop Python]$ nano hello_world.py

Our Hello World program is very simple, it only needs two lines.

The first line begins with a ‘shebang’ (the symbol #! – also known

Getting started

11

as a hashbang) followed by the path to the Python interpreter. The

program loader uses this line to work out what the rest of the lines

need to be interpreted with. If you’re running this in an IDE like IDLE,

you don’t necessarily need to do this.

The code that is actually read by the Python interpreter is only a

single line. We’re passing the value Hello World to the print function by

placing it in brackets immediately after we’ve called the print function.

Hello World is enclosed in quotation marks to indicate that it is a literal

value and should not be interpreted as source code. As we would

expect, the print function in Python prints any value that gets passed

to it from the console.

You can save the changes you’ve just made to the file in nano using

the key combination Ctrl+O, followed by Enter. Use Ctrl+X to exit nano.

 #!/usr/bin/env python2

 print(“Hello World”)

You can run the Hello World program by prefixing

its filename with ./ – in this case you’d type:

 ./hello_world.py.

 [liam@liam-laptop Python]$./hello_world.py

 Hello World

Tip

If you were using a graphical
editor such as gedit, then you
would only have to do the
last step of making the file
executable. You should only have
to mark the file as executable
once. You can freely edit the file
once it is executable.

“A variable is associated with an area in
memory that you can use to store data”

Variables and data types
A variable is a name in source code that is associated with an area in

memory that you can use to store data, which is then called upon

throughout the code. The data can be one of many types, including:

Integer Stores whole numbers

Float Stores decimal numbers

Boolean Can have a value of True or False

String Stores a collection of characters. “Hello World” is a
string

Get started with Python

Getting started

12

Tip

At this point, it’s worth explaining
that any text in a Python file
that follows a # character will be
ignored by the interpreter. This
is so you can write comments in
your code.

As well as these main data types, there are sequence types (technically,

a string is a sequence type but is so commonly used we’ve classed it

as a main data type):

List Contains a collection of data in a specific order

Tuple Contains a collection immutable data in a specific
order

A tuple would be used for something like a co-ordinate, containing

an x and y value stored as a single variable, whereas a list is typically

used to store larger collections. The data stored in a tuple is immutable

because you aren’t able to change values of individual elements in a

tuple. However, you can do so in a list.

It will also be useful to know about Python’s dictionary type. A

dictionary is a mapped data type. It stores data in key-value pairs.

This means that you access values stored in the dictionary using that

value’s corresponding key, which is different to how you would do it

with a list. In a list, you would access an element of the list using that

element’s index (a number representing where the element is placed

in the list).

Let’s work on a program we can use to demonstrate how to use

variables and different data types. It’s worth noting at this point that

you don’t always have to specify data types in Python. Feel free to

create this file in any editor you like. Everything will work just fine as

long as you remember to make the file executable. We’re going to call

ours variables.py.

Interpreted vs compiled languages

An interpreted language
such as Python is one
where the source code
is converted to machine
code and then executed
each time the program
runs. This is different from a

compiled language such as
C, where the source code is
only converted to machine
code once – the resulting
machine code is then
executed each time the
program runs.

Get started with Python

Getting started

Full code listing

#!/usr/bin/env python2

We create a variable by writing the name of the

variable we want followed# by an equals sign,

which is followed by the value we want to store

in the# variable. For example, the following line

creates a variable called# hello_str, containing the

string Hello World.

hello_str = “Hello World”

hello_int = 21

hello_bool = True

hello_tuple = (21, 32)

hello_list = [“Hello,”, “this”, “is”,

“a”, “list”]

This list now contains 5 strings. Notice that

there are no spaces# between these strings so if

you were to join them up so make a sentence #

you’d have to add a space between each element.

hello_list = list()

hello_list.append(“Hello,”)

hello_list.append(“this”)

hello_list.append(“is”)

hello_list.append(“a”)

hello_list.append(“list”)

The first line creates an empty list and the

following lines use the append# function

of the list type to add elements to the

list. This way of using a# list isn’t

really very useful when working

with strings you know of in

advance, but it can be

useful when working with

dynamic data such as

user# input. This list

will overwrite the

first list without

any warning

The following line creates
an integer variable called
hello_int with the #
value of 21. Notice how
it doesn’t need to go in
quotation marks

You could
also create the
same list in the
following way

The same principal is
true of Boolean values

We create a tuple in
the following way

And a list in this way

13

Get started with Python

Getting started

print(str(hello_tuple[0]))
We can’t change the value of those elements

like we just did with the list

Notice the use of the str function above to

explicitly convert the integer

value inside the tuple to a string before

printing it.

print(hello_dict[“first_name”] + “ “ + hello_

dict[“last_name”] + “ has “ +

 hello_dict[“eye_colour”] + “ eyes.”)

print(“{0} {1} has {2} eyes.”.format(hello_

dict[“first_name”],

 hello_dict[“last_name”],

 hello_dict[“eye_colour”]))

Remember
that tuples are
immutable,
although we
can access the
elements of them
like so

Let’s create a
sentence using
the data in our
hello_dict

A much tidier way
of doing this would
be to use Python’s
string formatter

as we# are using the same variable name as the

previous list.

hello_dict = { “first_name” : “Liam”,

 “last_name” :

“Fraser”,

 “eye_colour” : “Blue” }

Let’s access some elements inside our

collections# We’ll start by changing the value

of the last string in our hello_list and# add an

exclamation mark to the end. The “list” string is

the 5th element # in the list. However, indexes
in Python are zero-based, which means the

first element has an index of 0.

print(hello_list[4])

hello_list[4] += “!”

The above line is the same as

hello_list[4] = hello_list[4] + “!”

print(hello_list[4])

Notice that there
will now be two
exclamation marks
present when we
print the element

14

Get started with Python

We might as well
create a dictionary
while we’re at it.
Notice how we’ve
aligned the colons
below to make the
code tidy

15

Control structures
In programming, a control structure is any kind of statement that can

change the path that the code execution takes. For example, a control

structure that decided to end the program if a number was less than 5

would look something like this:

#!/usr/bin/env python2

import sys # Used for the sys.exit function

int_condition = 5

if int_condition < 6:

 sys.exit(“int_condition must be >= 6”)

else:

 print(“int_condition was >= 6 - continuing”)

The path that the code takes will depend on the value of

the integer int_condition. The code in the ‘if’ block will only be

executed if the condition is true. The import statement is used to

load the Python system library; the latter provides the exit function,

allowing you to exit the program, printing an error message. Notice

that indentation (in this case four spaces per indent) is used to indicate

which statement a block of code belongs to. ‘If’ statements are

probably the most commonly used control structures. Other control

“The path the code takes will depend on
the value of the integer int_condition”

Indentation in detail

As previously mentioned,
the level of indentation
dictates which statement a
block of code belongs to.
Indentation is mandatory
in Python, whereas in other
languages, sets of braces
are used to organise code
blocks. For this reason, it is

essential to use a consistent
indentation style. Four
spaces are typically used to
represent a single level of
indentation in Python. You
can use tabs, but tabs are
not well defined, especially if
you open a file in more than
one editor.

Get started with Python Getting started

Getting started

16

[liam@liam-laptop Python]$./

construct.py

How many integers? acd

You must enter an integer

[liam@liam-laptop Python]$./

construct.py

How many integers? 3

Please enter integer 1: t

You must enter an integer

Please enter integer 1: 5

Please enter integer 2: 2

Please enter integer 3: 6

Using a for loop

5

2

6

Using a while loop

5

2

6

structures include: the following items, which you should be aware

of when using Python:

• For statements, which allow you to iterate over items in

collections, or to repeat a piece of code again a certain number

of times;

• While statements, a loop that continues while the condition

is true.

We’re going to write a program that accepts user input from the

user to demonstrate how control structures work. We’re calling it

construct.py. The ‘for’ loop is using a local copy of the current value,

which means any changes inside the loop won’t make any changes

affecting the list. On the other hand however, the ‘while’ loop is

directly accessing elements in the list, so you could change the list

there should you want to do so. We will talk about variable scope in

some more detail later on in the article. The output from the above

program is as follows:

“The ‘for‘ loop uses a local copy, so
changes in the loop won’t affect the list”

Get started with Python

Getting started

17

The number of
integers we want
in the list

A list to store the
integers

#!/usr/bin/env python2

We’re going to write a program that will ask the

user to input an arbitrary

number of integers, store them in a collection,

and then demonstrate how the

collection would be used with various control

structures.

import sys # Used for the sys.exit

function

target_int = raw_input(“How many

integers? “)

By now, the variable target_int contains a string

representation of

whatever the user typed. We need to try and

convert that to an integer but

be ready to # deal with the error if it’s not.

Otherwise the program will

crash.

try:

 target_int = int(target_int)

except ValueError:

 sys.exit(“You must enter an

integer”)

ints = list()

count = 0

Full code listing

These are used
to keep track
of how many
integers we
currently have

Get started with Python

Getting started

Or with a while loop:

print(“Using a while loop”)

We already have the total above, but knowing

By now, the
user has given
up or we have
a list filled with
integers. We can
loop through
these in a couple
of ways. The first
is with a for loop

Keep asking for an integer until we have the

required number

while count < target_int:

 new_int = raw_input(“Please enter

integer {0}: “.format(count + 1))

 isint = False

 try:

 new_int = int(new_int)

 except:

 print(“You must enter an

integer”)

 # Only carry on if we have an integer. If not,

we’ll loop again

 # Notice below I use ==, which is different from

=. The single equals is an

assignment operator whereas the double

equals is a comparison operator.

 if isint == True:

 # Add the integer to the collection

 ints.append(new_int)
 # Increment the count by 1

 count += 1

print(“Using a for loop”)

for value in ints:

 print(str(value))

If the above
succeeds then
isint will be set
to true: isint
=True

18

Get started with Python

Getting started

19

Functions and variable scope
Functions are used in programming to break processes down

into smaller chunks. This often makes code much easier to read.

Functions can also be reusable if designed in a certain way. Functions

can have variables passed to them. Variables in Python are always

passed by value, which means that a copy of the variable is passed

to the function that is only valid in the scope of the function. Any

changes made to the original variable inside the function will be

discarded. However, functions can also return values, so this isn’t an

issue. Functions are defined with the keyword def, followed by the

name of the function. Any variables that can be passed through are

put in brackets following the function’s name. Multiple variables are

separated by commas. The names given to the variables in these

brackets are the ones that they will have in the scope of the function,

regardless of what the variable that’s passed to the function is called.

Let’s see this in action. The output from the program opposite is

as follows:

“Functions are defined with the keyword
def, then the name of the function”

More about a Python list

A Python list is similar to an
array in other languages. A
list (or tuple) in Python can
contain data of multiple
types, which is not usually
the case with arrays in other
languages. For this reason,

we recommend that you
only store data of the same
type in a list. This should
almost always be the case
anyway due to the nature of
the way data in a list would
be processed.

the len function is very

useful.

total = len(ints)

count = 0

while count < total:

 print(str(ints[count]))

 count += 1

Get started with Python

Getting started

20

Scope is an important thing to get the hang of, otherwise it can

get you into some bad habits. Let’s write a quick program to

demonstrate this. It’s going to have a Boolean variable called cont,

which will decide if a number will be assigned to a variable in an if

statement. However, the variable hasn’t been defined anywhere

apart from in the scope of the if statement. We’ll finish off by trying

to print the variable.

#!/usr/bin/env python2 # Below is a function

called modify_string, which accepts a variable

that will be called original in the scope of the

function. Anything # indented with 4 spaces

under the function definition is in the

scope.

def modify_string(original):

 original += “ that has been

modified.”

 # At the moment, only the local copy of this

string has been modified

def modify_string_return(original):

 original += “ that has been

modified.”

 # However, we can return our local copy to the

caller. The function# ends as soon as the return

statement is used, regardless of where it # is in

the function.

 return original

test_string = “This is a test string”

modify_string(test_string)

print(test_string)

test_string = modify_string_

return(test_string)

print(test_string)

The function’s return value is stored in the

variable test string, # overwriting the original and

therefore changing the value that is # printed.

We are now outside
of the scope of
the modify_string
function, as we have
reduced the level of
indentation

The test string
won’t be changed
in this code

However, we
can call the
function like this

[liam@liam-laptop Python]$./functions_and_

scope.py

This is a test string

This is a test string that has been modified.

Get started with Python

Getting started

21

#!/usr/bin/env python2

cont = False

var = 0

if cont:

 var = 1234

if var != 0:

 print(var)

#!/usr/bin/env python2

cont = False

if cont:

 var = 1234

print(var)

In the section of code above, Python will convert the integer to a string

before printing it. However, it’s always a good idea to explicitly convert

things to strings – especially when it comes to concatenating strings

together. If you try to use the + operator on a string and an integer,

there will be an error because it’s not explicitly clear what needs to

happen. The + operator would usually add two integers together.

Having said that, Python’s string formatter that we demonstrated

earlier is a cleaner way of doing that. Can you see the problem? Var has

only been defined in the scope of the if statement. This means that we

get a very nasty error when we try to access var.

[liam@liam-laptop Python]$./scope.py

Traceback (most recent call last):

 File “./scope.py”, line 8, in <module>

 print var

NameError: name ‘var’ is not defined

If cont is set to True, then the variable will be created and we can

access it just fine. However, this is a bad way to do things. The correct

way is to initialise the variable outside of the scope of the if statement.

Get started with Python

Getting started

The variable var is defined in a wider scope than the if statement,

and can still be accessed by the if statement. Any changes made to

var inside the if statement are changing the variable defined in the

larger scope. This example doesn’t really do anything useful apart

from illustrate the potential problem, but the worst-case scenario has

gone from the program crashing to printing a zero. Even that doesn’t

happen because we’ve added an extra construct to test the value of

var before printing it.

Comparison operators
The common comparison operators available in Python include:

< strictly less than

<= less than or equal

> strictly greater than

>= greater than or equal

== equal

!= not equal

“Google, or any other search engine,
is very helpful if you are stuck with
anything, or have an error message you
can’t work out how to fix”

Tip

You can define defaults for
variables if you want to be able to
call the function without passing
any variables through at all. You
do this by putting an equals
sign after the variable name. For
example, you can do:
def modify_string (original=”
Default String”)

22

Get started with Python

Getting started

Coding style
It’s worth taking a little time to talk about coding style. It’s simple to

write tidy code. The key is consistency. For example, you should always

name your variables in the same manner. It doesn’t matter if you want

to use camelCase or use underscores as we have. One crucial thing is

to use self-documenting identifiers for variables. You shouldn’t have

to guess what a variable does. The other thing that goes with this is to

always comment your code. This will help anyone else who reads your

code, and yourself in the future. It’s also useful to put a brief summary

at the top of a code file describing what the application does, or a part

of the application if it’s made up of multiple files.

Summary
This article should have introduced you to the basics of programming

in Python. Hopefully you are getting used to the syntax, indentation

and general look and feel of a Python program. The next step is

to learn how to come up with a problem that you want to solve,

and break it down into small steps that you can implement in a

programming language. Google, or any other search engine, is very

helpful. If you are stuck with anything, or have an error message you

can’t work out how to fix, stick it into Google and you should be a lot

closer to solving your problem. For example, if we Google ‘play mp3

file with python’, the first link takes us to a Stack Overflow thread with a

bunch of useful replies. Don’t be afraid to get stuck in – the real fun of

programming is solving problems one manageable chunk at a time.

23

Get started with Python

Introducing Python Python essentials

24

Now that you’ve taken the first steps with Python, it’s time

to begin using that knowledge to get coding. In this section,

you’ll find out how to begin coding apps for Android operating

systems (p.32) and the worldwide web (p.26). These easy-to-

follow tutorials will help you to cement the Python language

that you’ve learned, while developing a skill that is very helpful

in the current technology market. We’ll finish up by giving you

50 essential Python tips (p.40) to increase your knowledge and

ability in no time.

Introducing
Python
Lay the foundations and build your knowledge

Introducing PythonPython essentials

25

Introducing Python Make web apps with Python

Python 2.7:
https://www.python.org/download/
releases/2.7/

Django version 1.4:
 https://www.djangoproject.com/

What you’ll need…

Python provides quick and easy way to build
applications, including web apps. Find out how to
use it to build a feature-complete web app

Python is known for its simplicity and capabilities. At this point it is

so advanced that there is nothing you cannot do with Python, and

conquering the web is one of the possibilities. When you are using

Python for web development you get access to a huge catalogue

of modules and community support – make the most of them.

Web development in Python can be done in many different

ways, right from using the plain old CGI modules to utilising fully

groomed web frameworks. Using the latter is the most popular

method of building web applications with Python, since it allows

you to build applications without worrying about all that low-level

implementation stuff. There are many web frameworks available for

Python, such as Django, TurboGears and Web2Py. For this tutorial

we will be using our current preferred option, Django.

26

Make web
apps with
Python

01The django-admin.py file is used
to create new Django projects.

Let’s create one for our issue tracker
project here…

In Django, a project represents the
site and its settings. An application, on
the other hand, represents a specific
feature of the site, like blogging or
tagging. The benefit of this approach is
that your Django application becomes

The Django Project
magazine issue tracker

portable and can be integrated with
other Django sites with very little effort.
 $ django-admin.py startproject

ludIssueTracker

A project directory will be created.
This will also act as the root of your
development web server that comes
with Django. Under the project
directory you will find the following
items…
manage.py: Python script to work with
your project.
ludIssueTracker: A python package
(a directory with __init__.py file) for

Introducing PythonMake web apps with Python

02Before we start working
on the application, let’s

configure the Django project
as per our requirements.
Edit ludIssueTracker/settings.py
as follows (only parts requiring
modification are shown):
Database Settings: We will be
using SQLite3 as our database
system here.
NOTE: Red text indicates new
code or
updated code.
‘default’: {

 ‘ENGINE’:

‘django.db.backends.

sqlite3’,

 ‘NAME’: ‘ludsite.

db3,

Path settings
Django requires an absolute
path for directory settings.
But we want to be able to
pass in the relative directory
references. In order to do that
we will add a helper Python
function. Insert the following
code at the top of the settings.
py file:
 import os

 def getabspath(*x):

 return os.path.join(os.

path.abspath(os.path.

Configuring the
Django project

27

03 In this step we will create the
primary app for our site, called

ludissues. To do that, we will use the
manage.py script:
 $ python manage.py startapp

Creating ludissues app

04 This is the part where we
define the data model

for our app. Please see the inline
comments to understand what is
happening here.
From django.db import models:
 # We are importing the

user authentication module so

that we use the built

 # in authentication model

in this app

 from django.contrib.auth.

models import User

 # We would also create an

admin interface for our app

from django.contrib import

admin

 # A Tuple to hold the

multi choice char fields.

 # First represents the

field name the second one

repersents the display name

ISSUE_STATUS_CHOICES = (

 (‘new’, ‘New’),

 (‘accepted’,’Accepted’),

 (‘reviewed’,’Reviewed’),

 (‘started’,’Started’),

 (‘closed’,’Closed’),

)

Creating the data model

“When you are using Python for web
development you get access to a huge
catalogue of modules and support”

your project. This package is the one
containing your project’s settings and
configuration data.
ludIssueTracker/settings.py: This file
contains all the configuration options
for the project.
ludIssueTracker/urls.py: This file
contains various URL mappings.
wsgi.py: An entry-point for WSGI-
compatible web servers to serve your
project. Only useful when you are
deploying your project. For this tutorial
we won’t be needing it.

dirname(__file__)), *x)

Now update the path options:
 @code

 TEMPLATE_DIRS = (

 getabspath(‘templates’)

)

 MEDIA_ROOT =

getabspath(‘media’)

 MEDIA_URL = ‘/media/’

Now we will need to enable the
admin interface for our Django
site. This is a neat feature of Django
which allows automatic creation of
an admin interface of the site based
on the data model. The admin
interface can be used to add and
manage content for a Django site.
Uncomment the following line:

 INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.

contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.messages’,

 ‘django.contrib.

staticfiles’,

 ‘django.contrib.admin’,

 # ‘django.contrib.

admindocs’,

)

ludissues

We will need to enable this app in the
config file as well:
 INSTALLED_APPS = (

 ‘django.contrib.admin’,

 ‘ludissues’,

)

Introducing Python

28

05The admin site is already
enabled, but we need to enable

it in the urls.py file – this contains
the regex-based URL mapping from
model to view. Update the urls.py file
as follows:
 from django.conf.urls import

patterns, include, url

 from django.contrib import

admin

admin.autodiscover()

 urlpatterns = patterns(‘’,

 url(r’̂ admin/’,

include(admin.site.urls)),

)

Enabling the admin site

Make web apps with Python

06Django includes a built-in
web server which is very

handy to debug and test Django
applications. Let’s start it to see how
our admin interface works…
To start the web server:
 $ python manage.py

runserver

If you do not have any errors in your
code, the server should be available
on port 8000. To launch the admin
interface, navigate your browser to
http://localhost:8000/admin.

You will be asked to log in here.
Enter the username and password

Starting the Django
web server

After logging in, you will notice that
all the apps installed in your project are
available here. We are only interested in
the Auth and LudIssues app.

You can click the +Add to add a
record. Click the Add button next to
Users and add a few users to the site.

Once you have the users inside the
system, you can now add a few issues
to the system.

Click the Add button next to Issues.
Here you will notice that you can enter
Owner, Status and Summary for the
issue. But what about the opened_on
and modified_on field that we

 class Issue(models.Model):

 # owner will be a

foreign key to the User

model which is already built-

in Django

 owner = models.ForeignKe

y(User,null=True,blank=True)

 # multichoice with

defaulting to “new”

 status = models.

CharField(max_

length=25,choices=ISSUE_

STATUS_CHOICES,default=’new’)

 summary = models.

TextField()

 # date time field which

will be set to the date time

when the record is created

 opened_on = models.

DateTimeField(‘date opened’,

auto_now_add=True)

 modified_on = models.

DateTimeField(‘date modified’,

auto_now=True)

 def name(self):

 return self.summary.

split(‘\n’,1)[0]

 # Admin front end for the

app. We are also configuring

some of the

 # built in attributes for

the admin interface on

 # how to display the list,

how it will be sorted

 # what are the search

fields etc.

class IssueAdmin(admin.

ModelAdmin):

 date_hierarchy =

‘opened_on’

 list_filter =

(‘status’,’owner’)

 list_display = (‘id’,’n

ame’,’status’,’owner’,’modifi

ed_on’)

 search_fields =

[‘description’,’status’]

 # register our site with

the Django admin interface

admin.site.

“It’s great that
the owner field
is automatically
populated with
details of the users
inside the site”

register(Issue,IssueAdmin)

To have the created data model
reflected in the database, run the
following command:
$ python manage.py syncdb

You’ll be also asked to create a
superuser for it:
You just installed Django’s auth

system, which means you don’t

have any superusers defined.

Would you like to create one

now? (yes/no): yes

that you created while you were
syncing the database.

Introducing Python

29

Make web apps with Python

07At this point, the admin
interface is working. But

we need a way to display the
data that we have added using
the admin interface. But there is
no public interface. Let’s create
it now.

We will have to begin by
editing the main
urls.py (ludIssueTracker/urls.py).
 urlpatterns = patterns(‘’,

(r’̂ ’,include(‘ludissues.

urls’)),

 (r’̂ admin/’,

Creating the public user
interface for ludissues

08Create a urls.py file in the
app directory (ludissues/urls.

py) with the following content:
 from django.conf.urls

import patterns, include, url

 # use ludissues model

 from models import

ludissues

 # dictionary with all the

Creating ludissues.url

defined while modelling the app?
They are not here because they are
not supposed to be entered by the
user. opened_on will automatically
set to the date time it is created and
modified_on will automatically set
to the date time on which an issue
is modified.

Another cool thing is that
the owner field is automatically
populated with all the users inside
the site.

We have defined our list view to
show ID, name, status, owner and
‘modified on’ in the model. You
can get to this view by navigating
to http://localhost:8000/admin/
ludissues/issue/.

include(admin.site.urls)),

)

This ensures that all the requests will be
processed by ludissues.urls first.

Introducing Python

30

Make web apps with Python

10Templates will be loaded
from the ludIssueTracker/

ludIssueTracker/templates directory.

Creating the template files

“To display an issue list and details here,
we are using a Django feature called
generic views”

Which translates to ludIssueTracker/
ludIssueTracker/templates/. Since
we will be accessing the templates
from the ludissues app, the
complete directory path would be
ludIssueTracker/ludIssueTracker/
templates/ludissues. Create these
folders in your project folder.

Also, create the directory
ludIssueTracker/ludIssueTracker/media/
for holding the CSS file. Copy the style.
css file from the resources directory
of the code folder. To serve files from
this folder, make it available publicly.
Open settings.py and add these lines in
ludIssueTracker/ludIssueTracker/urls.py:

 from django.conf.urls import

patterns, include, url

 from django.conf import

settings

 # Uncomment the next two

lines to enable the admin:

 from django.contrib import

admin

admin.autodiscover()

 urlpatterns = patterns(‘’,

 (r’̂ ’,include(‘ludissues.

urls’)),

 (r’̂ admin/’, include(admin.

site.urls)),

 (r’̂ media/

(?P<path>.*)$’,’django.views.

static.serve’,

 {‘document_root’:settings.

MEDIA_ROOT})

)

In Django, we start with the
ludIssueTracker/ludIssueTracker/
templates/base.html template. Think of
it as the master template which can be
inherited by slave ones.
ludIssueTracker/ludIssueTracker/

templates/base.html
 <!DOCTYPE html PUBLIC “-//

W3C//DTD XHTML Strict//EN”

 “ HYPERLINK “http://www.

w3.org/TR/xhtml1/DTD/xhtml1-

strict.dtd” http://www.w3.org/TR/

xhtml1/DTD/xhtml1-strict.dtd”>

 <html>

 <head>

 <title>{% block title

%}{% endblock %}LUD Issues</

title>

 <link rel=”stylesheet”

href=”{{ MEDIA_URL }}style.css”

type=”text/css” media=”screen”

/>

 </head>

 <body>

 <div id=”hd”>

 <h1>LUD

Issue Tracker</h1>

 </div>

 <div id=”mn”>

<a href=”{% url issue-list

%}” class=”sel”>View Issues</

a>

Admin

Site

 </div>

 <div id=”bd”>

 {% block

content %}{% endblock %}

 </div>

 </body>

 </html>09In this step we will create the
template and media directories.

We have already mentioned the
template directory as
TEMPLATE_DIRS = (

 getabspath(‘templates’)

)

Setting up template and
media directories

objects in ludissues

info = {

 ‘queryset’:ludissues.

objects.all(),

}

 # To save us writing lots of

python code

 # we are using the list_

detail generic view

 #list detail is the name of

view we are using

 urlpatterns =

patterns(‘django.views.generic.

list_detail’,

 #issue-list and issue-detail

are the template names

 #which will be looked in the

default template

#directories

 url(r’̂ $’,’object_

list’,info,name=’issue-list’),

 url(r’̂ (?P<object_

id>\d+)/$’,’object_

detail’,info,name=’issue-detail’),

)

To display an issue list and details,
we are using a Django feature called
generic views. In this case we are
using views called list and details. This
allow us to create an issue list view
and issue detail view. These views are
then applied using the issue_list.html
and issue_detail.html template. In
the following steps we will create the
template files.

Introducing Python

31

Make web apps with Python

{{ variablename }} represents a
Django variable.
(% block title %} represents blocks.
Contents of a block are evaluated
by Django and are displayed. These
blocks can be replaced by the child
templates.
Now we need to create the issue_list.
html template. This template is
responsible for displaying all the
issues available in the system.
ludIssueTracker/ludIssueTracker/

templates/ludissues/issue_list.html
 {% extends ‘base.html’ %}

 {% block title %}View Issues

- {% endblock %}

 {% block content %}

 <table cellspacing=”0”

class=”column-options”>

 <tr>

 <th>Issue</th>

 <th>Description</th>

 <th>Status</th>

 <th>Owner</th>

 </tr>

 {% for issue in

object_list %}

 <tr>

 <td><a href=”{% url

issue-detail issue.id %}”>{{

issue.id }}</td>

 <td><a href=”{% url

issue-detail issue.id %}”>{{

issue.name }}</td>

 <td>{{ issue.status

}}</td>

 <td>{{ issue.

owner}}</td>

 </tr>

 {% endfor %}

 </table>

 {% endblock %}

Here we are inheriting the base.
html file that we created earlier. {%
for issue in object_list %} runs on the
object sent by the urls.py. Then we
are iterating on the object_list for
issue.id and issue.name.
Now we will create issue_detail.
html. This template is responsible for
displaying the detail view of a case.
ludIssueTracker/ludIssueTracker/
templates/ludissues/issue_detail.
html
 {% extends ‘base.html’ %}

 {% block title %}Issue #{{

object.id }} - {% endblock %}

 {% block content %}

 <h2>Issue #{{ object.id }}

{{ object.status }}</

span></h2>

 <div class=”issue”>

 <h2>Information</

h2>

 <div class=”date”>

 <p class=”cr”>Opened

{{ object.opened_on }} ago</p>

 <p class=”up”>Last

modified {{ object.modified_on

}} ago</p>

 </div>

 <div

class=”clear”> </div>

 <div class=”block

w49 right”>

 <p class=”ass

title”>Owner</p>

 <p class=”ass”>{{

object.owner }}</p>

 </div>

 <div

class=”clear”> </div>

 <div class=”block”>

 <p class=”des

title”>Summary</p>

 <p class=”des”>{{

object.summary }}</p>

 </div>

</div>

 {% endblock %}

And that’s everything! The issue
tracker app is now complete and
ready to use. You can now point your
browser at localhost:8000 to start
using the app.

Introducing Python Build an app for Android with Python

Master Kivy, the excellent cross-platform application
framework to make your first Android app…

The great thing about Kivy is

there are loads of directions

we could take it in to do some

pretty fancy things. But, we’re

going to make a beeline for one

of Kivy’s coolest features - the

ability it affords you to easily run

your programs on Android.

We’ll approach this by first

showing how to make a new

app, this time a dynamic

Breakout-style game. We’ll then

be able to compile this straight

to an Android APK that you can

use just like any other.

Of course, once you have

mastered the basic techniques

you aren’t limited to using any

particular kind of app, as even on

Android you can make use of all

your favourite Python libraries

32

Build an app for
Android with Python

to make any sort of program

you like.

Once you’ve mastered Kivy,

your imagination is the only

limit. If you’re pretty new to Kivy,

don’t worry, we won’t assume

that you have any pre-existing

knowledge. As long as you have

mastered some of the Python

in this book so far, and have a

fairly good understanding of the

language, you shouldn’t have

any problems following along

with this.
Before anything else, let's

throw together a basic Kivy app

(Fig. 01). We've pre-imported

the widget types we'll be using,

which this time are just three:

the basic Widget with no special

behaviour, the ModalView with

a pop-up behaviour as used

last time, and the FloatLayout

as we will explain later. Kivy has

many other pre-built widgets for

creating GUIs, but this time we’re

going to focus on drawing the

whole GUI from scratch using

Kivy's graphics instructions. These

comprise either vertex instructions

to create shapes (including

rectangles, lines, meshes, and

so on) or contextual graphics

changes (such as translation,

rotation, scaling, etc), and are able

to be drawn anywhere on your

screen and on any widget type.

Before we can do any of this

we'll need a class for each kind of

game object, which we’re going

to pre-populate with some of

the properties that we'll need

later to control them. Remember

from last time, Kivy properties are

special attributes declared at class

level, which (among other things)

can be modified via kv language

and dispatch events when they

are modified. The Game class will

be one big widget containing the

entire game. We've specifically

Introducing PythonBuild an app for Android with Python

33

made it a subclass of FloatLayout

because this special layout is able

to position and size its children

in proportion to its own position

and size – so no matter where we

run it or how much we resize the

window, it will place all the game

objects appropriately.

Next we can use Kivy's graphics

instructions to draw various

shapes on our widgets. We'll just

demonstrate simple rectangles to

show their locations, though there

are many more advanced options

you might like to investigate. In

a Python file we can apply any

instruction by declaring it on the

canvas of any widget, an example

of which is shown in Fig. 03.

This would draw a red rectangle

with the same position and size

as the player at its moment of

instantiation – but this presents a

problem, unfortunately, because

the drawing is static. When we

later go on to move the player

widget, the red rectangle will

stay in the same place, while the

widget will be invisible when it is

in its real position.

We could fix this by keeping

references to our canvas

instructions and repeatedly

updating their properties to track

the player, but there's actually an

easier way to do all of this - we

can use the Kivy language we

introduced last time. It has a

special syntax for drawing on

the widget canvas, which we

can use here to draw each of our

widget shapes:

<Player>:

 canvas:

 Color:

 rgba: 1, 1, 1, 1

 Rectangle:

 pos: self.pos

 size: self.size

<Ball>:

 canvas:

 Color:

 rgb: 1, 0.55, 0

 Rectangle:

 pos: self.pos

 size: self.size

<Block>:

 canvas:

 Color:

 rgb: self.colour

 # A property we

predefined above

 Rectangle:

 pos: self.pos

 size: self.size

 Color:

 rgb: 0.1, 0.1, 0.1

 Line:

 rectangle:

 [self.x, self.y,

 self.width, self.

height]

The canvas declaration is special,

underneath it we can write any

canvas instructions we like. Don't

get confused, canvas is not a

widget and nor are graphics

instructions like Line. This is just

a special syntax that is unique to

the canvas. Instructions all have

different properties that can be

set, like the pos and size of the

rectangle, and you can check the

Kivy documentation online for

all the different possibilities. The

biggest advantage is that although

we still declare simple canvas

instructions, kv language is able

to detect what Kivy properties we

have referred to and automatically

track them, so when they are

updated (the widget moves or is

resized) the canvas instructions

move to follow this!

from kivy.app import App

from kivy.uix.widget import

Widget

from kivy.uix.floatlayout

import FloatLayout

from kivy.uix.modalview

import ModalView

__version__ = '0.1' #

Used later during Android

compilation

class BreakoutApp(App):

 pass

BreakoutApp().run()

from kivy.properties

import (ListProperty,

NumericProperty,

O b j e c t P r o p e r t y ,

StringProperty)

Fig 01

Fig 02

Introducing Python

34

from kivy.graphics.context_

instructions import Color

 from kivy.graphics.

vertex_instructions import

Rectangle

 class Player(Widget):

 class Game(FloatLayout):

Will contain everything

 blocks = ListProperty([])

 player = ObjectProperty()

The game's Player instance

 ball = ObjectProperty() #

The game's Ball instance

 class Player(Widget): # A

moving paddle

 position =

NumericProperty(0.5)

 direction =

StringProperty('none')

 class Ball(Widget): # A

bouncing ball

 # pos_hints are for

proportional positioning,

see below

 pos_hint_x =

NumericProperty(0.5)

 pos_hint_y =

NumericProperty(0.3)

 proper_size =

NumericProperty(0.)

 velocity =

ListProperty([0.1, 0.5])

 class Block(Widget): #

Each coloured block to

destroy

 colour =

ListProperty([1, 0, 0])

 def __init__(self,

**kwargs):

 super(Player,

self).__init__(**kwargs)

 with self.

canvas:

 Color(1, 0,

0, 1) # r, g, b, a -> red

Rectangle(pos=self.pos,

size=self.size)

 # or without

the with syntax, self.

canvas.add(...)

Above Running the app shows our coloured
blocks on the screen… but they all overlap! We
can fix that easily

You probably noticed we

had one of the Block’s ‘Color’

instructions refer to its colour

property. This means that we can

change the property any time to

update the colour of the block, or

in this case to give each block a

random colour (Fig. 04).

Now that each of our widgets

has a graphical representation,

let’s now tell our Game where

to place them, so that we can

start up the app and actually see

something there.
class Game(FloatLayout):

 def setup_blocks(self):

 for y_jump in range(5):

 for x_jump in

range(10):

 block = Block(pos_

hint={

 'x': 0.05 + 0.09*x_

jump,

 'y': 0.05 + 0.09*y_

jump})

 self.blocks.

append(block)

 self.add_

widget(block)

class BreakoutApp(App):

 def build(self):

 g = Game()

 g.setup_blocks()

 return g

Here we create the widgets we

want then use add_widget to add

them to the graphics tree. Our

root widget on the screen is an

instance of Game and every block

is added to that to be displayed.

The only new thing in there is

that every Block has been given

a pos_hint. All widgets have this

special property, and it is used by

FloatLayouts like our Game to set

their position proportionately to

the layout.

The dictionary is able to handle

various parameters, but in this

case ‘x’and ‘y’ give x and y Block

position as a relative fraction of

the parent width and height.

You can run the app now, and

this time it will add 50 blocks to

the Game before displaying it

on the screen. Each should have

one of the three possible random

colours and be positioned in a

grid, but you'll now notice their

sizes haven't been manually set so

they all overlap. We can fix this by

setting their size_hint properties –

and let's also

Build an app for Android with Python

Fig 03

Introducing Python

35

Build an app for Android with Python

take this opportunity to do the

same for the other widgets as

well (Fig. 05).

This takes care of keeping all our

game widgets positioned and

sized in proportion to the Game

containing them. Notice that the

Player and Ball use references to

the properties we set earlier, so

we'll be able to move them by

just setting these properties and

letting kv language automatically

update their positions.

The Ball also uses an extra

property to remain square rather

than rectangular, just because the

alternative would likely look a little

bit odd.

We've now almost finished

the basic graphics of our app! All

that remains is to add a Ball and a

Player widget to the Game.
<Game>:

 ball: the_ball

 player: the_player

 Ball:

 id: the_ball

 Player:

 id: the_player

You can run the game again

now, and should be able to see

all the graphics working properly.

Nothing moves yet, but thanks to

the FloatLayout everything should

remain in proportion if you resize

the game/window.

Now we just have to add the

game mechanics. For a game like

this you usually want to run some

update function many times per

second, updating the widget

positions and carrying out game

logic – in this case collisions with

the ball (Fig. 06).

The Clock can schedule

any function at any time,

either once or repeatedly. A

function scheduled at interval

automatically receives the time

since its last call (dt here), which

we've passed through to the ball

and player via the references we

created in kv language. It's good

practice to scale the update (eg

ball distance moved) by this dt,

so things remain stable even if

something interrupts the clock

and updates don't meet the

regular 1/60s you want.

At this point we have also

added the first steps toward

handling keyboard input, by

binding to the kivy Window to

call a method of the Player every

time a key is pressed. We can

then finish off the Player class by

adding this key handler along

with touch/mouse input.

class Player(Widget):

 def on_touch_down(self,

touch):

 self.direction = (

 'right' if touch.x >

self.parent. center_x else

'left')

 def on_touch_up(self,

touch):

 self.direction = 'none'

 def on_key_down(self,

keypress, scancode, *args):

 if scancode == 275:

 self.direction =

'right'

 elif scancode == 276:

 self.direction = 'left'

 else:

 self.direction = 'none'

 def on_key_up(self, *args):

 self.direction = 'none'

 def update(self, dt):

 dir_dict = {'right': 1,

'left': -1, 'none': 0}

 self.position += (0.5

* dt * dir_ dict[self.

direction])

These on_touch_ functions

are Kivy's general method for

interacting with touch or mouse

input, they are automatically

called when the input is detected

and you can do anything you

like in response to the touches

you receive. In this case we set

the Player's direction property

in response to either keyboard

and touch/mouse input, and

use this direction to move the

Player when its update method is

called. We can also add the right

behaviour for the ball (Fig. 07).

This makes the ball bounce off

every wall by forcing its velocity

to point back into the Game,

as well as bouncing from the

player paddle – but with an extra

kick just to let the ball speed

change. It doesn't yet handle any

interaction with the blocks or

any win/lose conditions, but it

does try to call Game.lose() if the

Introducing Python

36

ball hits the bottom of the player's

screen, so let's now add in some

game end code to handle all of this

(Fig. 08). And then add the code in

Fig. 09 to your 'breakout.kv 'file.

This should fully handle the

loss or win, opening a pop-up

with an appropriate message

and providing a button to try

again. Finally, we have to handle

destroying blocks when the ball

hits them (Fig. 10).

This fully covers these last

conditions, checking collision

via Kivy's built-in collide_widget

method that compares their

bounding boxes (pos and size). The

bounce direction will depend on

how far the ball has penetrated, as

this will tell us how it first collided

with the Block.

So there we have it, you can

run the code to play your simple

Breakout game. Obviously it's very

simple right now, but hopefully

you can see lots of different ways

to add whatever extra behaviour

you like – you could add different

types of blocks and power-ups, a

lives system, more sophisticated

paddle/ball interaction, or even

build a full game interface with a

menu and settings screen as well.

We’re just going to finish

showing one cool thing that you

can already do – compile your

game for Android! Generally

speaking you can take any Kivy

app and turn it straight into an

Android APK that will run on any

Build an app for Android with Python

of your Android devices. You can

even access the normal Android

API to access hardware or OS

features such as vibration, sensors

or native notifications.

We'll build for Android using

the Buildozer tool, and a Kivy

sister project wrapping other

build tools to create packages on

different systems. This takes care

of downloading and running

the Android build tools (SDK,

NDK, etc) and Kivy's Python-for-

Android tools that create the APK.

import random

 class Block(Widget):
 def __init__(self,
**kwargs):
 super(Block,
self).__init__(**kwargs)
 self.colour =
random.choice([
 (0.78, 0.28,
0),)0.28, 0.63, 0.28),)0.25,
0.28, 0.78)])

<Block>:
 size_hint: 0.09, 0.05
 # ... canvas part

<Player>:
 size_hint: 0.1, 0.025
 pos_hint: {'x': self.
position, 'y': 0.1}
 # ... canvas part

<Ball>:
 pos_hint: {'x': self.pos_
hint_x, 'y': self.pos_hint_y}

 size_hint: None, None
 proper_size:
 min(0.03*self.parent.
height, 0.03*self.parent.width)
 size: self.proper_size,
self.proper_size
 # ... canvas part

 from kivy.clock import
Clock
 from kivy.core.window
import Window
 from kivy.utils import
platform

 class Game(FloatLayout):
 def update(self, dt):
 self.ball.
update(dt) # Not defined yet
 self.player.
update(dt) # Not defined yet

 def start(self,
*args):
 Clock.schedule_
interval(self.update, 1./60.)

 def stop(self):
 Clock.
unschedule(self.update)

 def reset(self):
 for block in
self.blocks:
 self.remove_
widget(block)
 self.blocks = []
 self.setup_
blocks()
 self.ball.velocity
= [random.random(), 0.5]
 self.player.
position = 0.5

 class BreakoutApp(App):
 def build(self):

Fig 04

Fig 05

Fig 06

Introducing Python

37

Build an app for Android with Python

 g = Game()
 if platform() !=
'android':
 Window.
bind(on_key_down=g.player.
on_key_down)
 Window.
bind(on_key_up=g.player.on_
key_up)
 g.reset()
 Clock.schedule_
once(g.start, 0)
 return g

 class Ball(Widget)

 def update(self, dt):

 self.pos_hint_x

+= self.velocity[0] * dt

 self.pos_hint_y

+= self.velocity[1] * dt

 if self.right >

self.parent.right: # Bounce

from right

 self.

velocity[0] = -1 * abs(self.

velocity[0])

 if self.x < self.

parent.x: # Bounce from left

 self.

velocity[0] = abs(self.

velocity[0])

 if self.top

> self.parent.top: # Bounce

from top

 self.

velocity[1] = -1 * abs(self.

velocity[1])

 if self.y < self.

parent.y: # Lose at bottom

 self.parent.

lose() # Not implemented yet

 self.bounce_from_

player(self.parent.player)

 def bounce_

fro m _ player(s elf,

player):

 if self.

collide_widget(player):

 self.

velocity[1] = abs(self.

velocity[1])

 self.

velocity[0] += (

 0.1

* ((self.center_x -

player.center_x) /

player.width))

c l a s s

GameEndPopup(ModalView):

 message =

StringProperty()

 game =

ObjectProperty()

 class Game(Widget):

 def lose(self):

 self.stop()

 GameEndPopup(

message='[color=#ff0000]You

lose![/color]',

game=self).open()

 def win(self): #

Not called yet, but we'll

need it later

 self.stop()

 GameEndPopup(

message='[color=#00ff00]You

win![/color]',

game=self).open()

Here you will be needing

some basic dependencies, which

can be installed with ease just

by using your distro's normal

repositories. The main ones to use

are OpenJDK7, zlib, an up-to-date

Cython, and Git. If you are using

a 64-bit distro you will also be

in need of 32-bit compatibility

libraries for zlib, libstdc++, as well

as libgcc. You can then go on and

download and install Buildozer:

 <GameEndPopup>:

 size_hint: 0.8, 0.8

 auto_dismiss: False

Don't close if player

clicks outside

 BoxLayout:

 orientation:

'vertical'

 Label:

 text: root.

message

 font_size:

60

 markup: True

 halign:

'center'

 Button:

 size_hint_y:

None

 height:

sp(80)

 text: 'Play

again?'

 font_size:

60

 on_release:

root.game.start(); root.

dismiss()

Fig 07

Fig 08

Fig 09

Introducing Python

38

Build an app for Android with Python

Putting your APK
on the Play Store

1 Build and sign a
release APK

Begin by creating a personal
digital key, then using it to sign
a special release version of the
APK. Run these commands, and
follow the instructions.

Create your personal

digital key ##

You can choose your own

keystore name, alias,

and passwords.

$ keytool -genkey -v

-keystore test- release-

key.keystore \

 -alias test-alias

-keyalg RSA

-keysize 2048 -validity

10000

Compile your app in

release mode

$ buildozer android

release

Sign the APK with your

new key

$ jarsigner -verbose

-sigalg

SHA1withRSA -digestalg

SHA1 \

 -keystore ./test-

release-key.keystore \

 ./bin/KivyBreakout-0.1-

release-

unsigned.apk test-alias

Align the APK zip file

$ ~/.buildozer/android/

platform/android- sdk-21/

tools/zipalign -v 4 \

 ./bin/KivyBreakout-0.1-

release-

unsigned.apk \

 ./bin/KivyBreakout-0.1-

release.apk

Find out how to digitally sign a
release APK and upload it to an
app store of your choice

When you first run it, it will

download both the Android SDK

and NDK, which are large (at least

hundreds of megabytes) but vital

to the build. It will also take time

to build these and to compile the

Python components of your APK.

A lot of this only needs to be

done once, as future builds will

take a couple of minutes if you

change the buildozer.spec, or

just a few seconds if you've only

changed your code.

The APK produced is a debug

APK, and you can install and use

it. There are extra steps if you

want to digitally sign it so that it

can be posted on the Play store.

This isn't hard, and Buildozer can

do some of the work, but check

the documentation online for

full details.

Assuming everything goes

fine (it should!), your Android

APK will be in a newly created

'bin' directory with the name

‘KivyBreakout-0.1-debug.apk’.

You can send it to your phone

any way you like (eg email),

though you may need to

enable application installation

from unknown sources in your

Settings before you can install it.

git clone git://github.com/

kivy/buildozer

cd buildozer

sudo python2.7 setup.py

install

When you’re done with that part

you can then go on and navigate

to your Kivy app, and you’ll have

to name the main code file ‘main.

py’, this is the access point that the

Android APK will expect. Then:

buildozer init

This creates a ‘buildozer.spec’ file,

a settings file containing all the

information that Buildozer needs

to create your APK, from the name

and version to the specific Android

build options. We suggest that you

check through the whole file just

to see what's available but most of

the default settings will be fine, the

only thing we suggest changing

is (Fig. 11).

There are various other options

you will often want to set, but

none are really all that vital right

now, so you’re able to immediately

tell Buildozer to build your APK and

get going!
buildozer android debug

This will take some time, so be

patient and it will work out fine.

“Check through the whole file just to see
what’s available, but most of the default
settings will be fine”

