

Learn Python: Basic to Advanced Concepts
1. Python Arithmetic Operators

2. Python Data Types

3. Python Variables

4. Python Comments

5. Standard Python Functions

6. Python Type Casting

7. Program Flow Control in Python

8. Boolean Operators in Python

9. Conditional Statements in Python

10. Loop Statements in Python

11. Jump Statements in Python

12. Functions in Python

13. Python Variable Scope Resolution

14. Global Statement

15. Importing Modules in Python

16. Exception Handling in Python

17. Lists in Python

18. Tuples in Python

19. Python Dictionaries

20. Sets in Python

Page 1 © Copyright by Interviewbit

Contents

Python Cheat Sheet

Learn Python: Basic to Advanced
Concepts (.....Continued)

21. Comprehensions in Python

22. String Manipulation in Python

23. Formatting Dates in Python

24. Python RegEx

25. Debugging in Python

26. Logging in Python

27. Lambda Function in Python

28. Ternary Operator in Python

29. *args and **kwargs in Python

30. if __name__ == "__main__" in Python

31. Python Dataclasses

32. Python Virtual Environment

33. Python Commands

Page 2 © Copyright by Interviewbit

Introduction: What is Python?

Python is a High-Level Programming Language, with high-level inbuilt data
structures and dynamic binding. It is interpreted and an object-oriented
programming language. Python distinguishes itself from other programming
languages in its easy to write and understand syntax, which makes it charming to
both beginners and experienced folks alike. The extensive applicability and library
support of Python allow highly versatile and scalable so�ware and products to be
built on top of it in the real world.

The Zen of Python

The Zen of Python is basically a list of Python Aphorishm’s written down in a poetic
manner, to best showcase the good programming practices in Python.

Page 3 © Copyright by Interviewbit

Let's get Started

Python Cheat Sheet

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is o�en better than right now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

Learn Python: Basic to Advanced Concepts
1. Python Arithmetic Operators

The Arithmetic Operators in the below table are in Lowest to Highest precedence.

Page 4 © Copyright by Interviewbit

Python Cheat Sheet

Operators Operation Explanation Examples

+ Addition
Returns sum
of 2
numbers

1 + 3 = 4

- Subtraction
Returns the
difference of
2 numbers

1 - 3 = -2

* Multiplication
Returns the
product of 2
numbers

1 * 3 = 3

/ Division

Returns the
value of a
divided by b
as a decimal
value

1 / 3 =
0.33

//
Floored
Division

Returns the
floor of a
divided by b

1 // 3 = 0

% Remainder

Returns the
remainder
when a is
divided by b

1 % 3 = 1

Some examples are shown below:

Page 5 © Copyright by Interviewbit

Python Cheat Sheet

#Example for Addition
>>> 1 + 3
4
#Example for Subtraction
>>> 1 - 3
-2
#Example for Multiplication
>>> 6 * 6
36
#Example for Floored Division
>>> 4 // 2
2
#Example for Division
>>> 3 / 2
1.5000
#Example for Modulo
>>> 3 % 2
1

2. Python Data Types

The table below lists the different data types in Python along with some examples of
them:

DataTypes Examples

Integers 0, 2, -1, 5

Strings “a”, “hello”, “1234”, “12 Hello.”

Boolean True, False

Floating Point Numbers 16.0, -11.0, 2021.5

3. Python Variables

Page 6 © Copyright by Interviewbit

Python Cheat Sheet

Variables are names given to data items that may take on one or more values during
a program’s runtime.
Following are the variable naming conventions in python:

It cannot begin with a number.
It must be a single word.
It must consist of letters and _ symbols only.
Variables in Python which start with _ (underscore) are considered as “Unuseful”.

Some examples are shown below:

>>> variable_name = "Hello"
>>> variable_name
'Hello'
>>> variableName = 123
>>> variableName
123

4. Python Comments

Comments are lines of text/code in the program, which are ignored by the compiler
during program execution.

There are multiple types of comments in python:

Inline Comment -
We can write an Inline Comment by typing # followed by the comment.

Inline Comment to calculate sum of 2 numbers
def fun(a, b):
 return a + b

Multiline Comment -
We can write a Multiline Comment by typing # followed by the comment in each of
the lines.

Page 7 © Copyright by Interviewbit

Python Cheat Sheet

Multiline
Comment
Function to calculate
sum of 2 numbers
def fun(a, b):
 return a + b

Docstring Comment -
Docstring comments are achieved by Typing the comment within triple quotes. ('''

comment ''')

'''
This is a function
to find sum
of 2 numbers.
This is an example of
docstring comment.
'''
def fun(a, b):
 return a + b

5. Standard Python Functions

print() function in Python
The print() function prints some specified message to the screen or some standard
output device. We can print strings, numbers, or any other object using this function.
We can print multiple tokens, and also specify to print the data separated by different
delimiters using the print() function.

Page 8 © Copyright by Interviewbit

Python Cheat Sheet

>>> print("Hello World")
Hello World
>>> var = "Interviewbit"
>>> print("My name is ", var)
('My name is ', 'Interviewbit')
>>> print("My name is " + var)
My name is Interviewbit
>>> print(123)
123
>>> a = [1, 2, 3, 4]
>>> print(a)
[1, 2, 3, 4]

input() function in Python
The input() function in Python is used to take any form of inputs from the
user/standard input device, which can later be processed accordingly in the program.
It is complementary to the print() function.

>>> print('Enter your name.')
>>> myName = input()
>>> print('Hello, {}'.format(myName))
Enter your name.
Interviewbit
Hello, Interviewbit

len() function in Python
The len() function is used find the length(number of elements) of any python
container like string, list, dictionary, tuple, etc.

For List
a = [1, 2, 3]
print(len(a))
For string
a = "hello"
print(len(a))
For tuple
a = ('1', '2', '3')
print(len(a))

ord() function in Python

Page 9 © Copyright by Interviewbit

Python Cheat Sheet

The ord() function in Python will return an integer that represents the Unicode
Character passed into it. It takes a single character as a parameter.

Example:

Print unicode of 'A'
print(ord('A'))
Print unicode of '5'
print(ord('5'))
Print unicode of '$'
print(ord('$'))
Output:
65
53
36

6. Python Type Casting

Type casting is basically a conversion of variables of a particular datatype into some
other datatype, such that the conversion is valid.

Type casting can be of two types:

Page 10 © Copyright by Interviewbit

Python Cheat Sheet

Implicit Type Casting: In implicit type casting, the python compiler internally
typecasts one variable into another type without the external action of the user.
Example:

int_num = 100
float_num = 1.01
ans = int_num + float_num
print(type(int_num))
print(type(float_num))
ans is implicitly typecasted to float type for greater precision
print(type(ans))

Explicit Type Casting: In explicit type casting, the user explicitly forces the
compiler to convert a variable from one type to another. The different ways of
explicit typecasting are given below:

1. Integer to String or Float:

To typecast an integer into a string type, we use the str() method. Similarly, to
typecast it into a float type, we use the float() method.

For example:

Page 11 © Copyright by Interviewbit

Python Cheat Sheet

 >>> var = 123
 >>> str(var)
 '123'
 >>> var = 123
 >>> float(var)
 123.0

2. Float to Integer:

To typecast a float datatype into an integer datatype, we use the int() method.

For example:

 >>> var = 7.8
 >>> print(int(var))
 7

7. Program Flow Control in Python

Relational Operators in Python

The Table gives a list of relational operators available in Python along with their
functions:

Page 12 © Copyright by Interviewbit

Python Cheat Sheet

Operator What it does

== Is equal to

>= Is Greater than or Equal to

<= Is Less than or Equal to

> Is Greater than

< Is Less than

!= Not Equal to

Some examples are given below:

Equality Operator
>>> 10 == 10
True # 10 is equal to 10, so true
>>> 10 == "10"
False # The first string is of type int, 2nd of type string, so false.
Greater than
>>> 10 > 20
False # 10 is lesser than 20, so above expression is false.
Inequality
>>> 10 != 20
True # 10 is not equal to 20, so the expression is true
Greater than or equal to
>>> (2 + 3) >= (4 + 1)
True # (2 + 3) = 5 and (4 + 1) = 5, so the expression is true.

Note: Never use relational operators to compare boolean operations. Use is or is
not operators for it.

Page 13 © Copyright by Interviewbit

Python Cheat Sheet

>>> True is False
False
>>> True is not False
True

8. Boolean Operators in Python

The Table gives a list of boolean operators available in Python along with their
functions:

Operator What it does

and Returns True if both operands are True, else False

or Returns True if both operands are True, else False

not Returns value opposite to the Truth value of the
expression

Examples:

and operator
print(True and False)
False
or operator
print(True or False)
True
not operator
print(not False)
True

9. Conditional Statements in Python

If Statements: If statement is a condition statement that will perform some
operation, if the expression given in it evaluates to true as shown below:

Page 14 © Copyright by Interviewbit

Python Cheat Sheet

>>> var = "Good"
>>> if var == "Good":
... print("Same")
...
Same

 Elif Statements: This statement is used in conjunction with the if statement to
add some other condition which is evaluated if the condition in if statement
fails.

>>> var = "Good"
>>> if var == "Good":
... print("Same")
... elif var != "Good":
... print("Not Same")
...
Same

Else Statements: This statement is used to perform some operation, if all the if
and elif statements evaluates to be false.

Page 15 © Copyright by Interviewbit

Python Cheat Sheet

>>> var = "Good"
>>> if var != "Good":
... print("Not Same")
... else:
... print("Same")
...
Same

The final if-elif-else ladder looks like shown below:

10. Loop Statements in Python

Loops in Python are statements that allow us to perform a certain operation multiple
times unless some condition is met.

For Loops: For loop is used to iterate iterables like string, tuple, list, etc and perform
some operation as shown in the flowchart below:

Page 16 © Copyright by Interviewbit

Python Cheat Sheet

For with range:
This loop format will iterate overall numbers from 0 to Limit - 1.
The below example prints numbers from 0 to 4.

for i in range(5):
print(i)
Output:
0
1
2
3
4

For with range(start, stop, step):
 This will run the loop from start to stop - 1, with step size = step in each iteration.
 In the below example, the start is 2, end point is 10 and the step size is 2. Hence it
prints 2,4,6,8

Page 17 © Copyright by Interviewbit

Python Cheat Sheet

for i in range(2, 10, 2):
print(i)
Output:
2
4
6
8

For with in:
 This is used to iterate over all the elements in a python container like list,
tuple, dictionary, etc.

a = [1, 3, 5, 7]
for ele in a:
print(ele)
Output:
1
3
5
7

While Loops:
This is used for executing set of statements within its block as long as the
associated loop condition is evaluated to True as shown in the image below:

Page 18 © Copyright by Interviewbit

Python Cheat Sheet

>>> count = 5
>>> while count > 0:
... print(count)
... count -= 1
...
5
4
3
2
1

11. Jump Statements in Python

break: break statements are used to break out of the current loop, and allow
execution of the next statement a�er it as shown in the flowchart below:

Page 19 © Copyright by Interviewbit

Python Cheat Sheet

>>> for i in range(5):
... print(i)
... if i == 3:
... break
...
0
1
2
3

continue: continue statement allows us to send the control back to the starting
of the loop, skipping all the lines of code below it in the loop. This is explained in
the flowchart below:

Page 20 © Copyright by Interviewbit

Python Cheat Sheet

>>> for i in range(5):
... if i == 3:
... continue
... print(i)
...
0
1
2
4

pass: The pass statement is basically a null statement, which is generally used as
a placeholder. It is used to prevent any code from executing in its scope.

for i in range(5):
 if i % 2 == 0:
 pass
 else:
 print(i)
Output:
1
3

Page 21 © Copyright by Interviewbit

Python Cheat Sheet

return: return statement allows us to send the control of the program outside
the function we are currently in. A function can have multiple return statements,
but can encounter only one of them during the course of its execution.

def func(x):
 if x == 'Hello':
 return True
 else:
 return False

12. Functions in Python

Functions are used to well-organized our code and enhance code readability and
reusability. In Python, a function is defined using the def keyword. A function can
return some value, or not depending upon its use case. If it has to return a value, the
return statement (which has been discussed) is used. The syntax of a python function
is shown in the image below:

Example of a function:

Page 22 © Copyright by Interviewbit

Python Cheat Sheet

Function to return sum of two numbers
def getSum(a, b):
 return a + b

Function to print sum of 2 numbers
def printSum(a, b):
 print(a + b)

print(getSum(5, 6))
printSum(5, 6)

13. Python Variable Scope Resolution

Scope of a variable is the part of the code, where it can be accessed freely and used
by the program.

The scopes in the above image are explained as follows:

Built-in: These are reserved names for Python built-in modules.
Global: These variables are defined at the highest level.
Enclosed: These variables are defined inside some enclosing functions.
Local: These variables are defined inside the functions or class and are local to
them.

Page 23 © Copyright by Interviewbit

Python Cheat Sheet

The rules used in Python to resolve scope for local and global variables are as follows:

Code in the global scope cannot use any local variables.
Code in a function’s local scope cannot use variables in any other local scope.
However, a local scope can access global variables.
We can use the same name for different variables if they are in different scopes.

14. Global Statement

To modify a global variable from inside a function, we use the global statement:

def func():
 global value
 value = "Local"

value = "Global"
func()
print(value)
Output:
Local

We set the value of “value” as Global. To change its value from inside the function, we
use the global keyword along with “value” to change its value to local, and then print
it.

15. Importing Modules in Python

Python has various external libraries of code with useful utilities and functions. To
use these modules, we need to import them into our code, using the import
keyword.

For example, if we want to use the functionalities of the math module, then we can
import it in our python code by using import math as shown in the example below.

import math
print(math.pi)
Output:
3.141592653589793

Page 24 © Copyright by Interviewbit

Python Cheat Sheet

If we want to perform any string manipulations, we can use the string module as
import string in python. More of this is covered in the String Manipulation section
below.

16. Exception Handling in Python

Exception Handling is used to handle situations in our program flow, which can
inevitably crash our program and hamper its normal working. It is done in Python
using try-except-finally keywords.

try: The code in try section is the part of the code where the code is to be tested
for exceptions.
except: Here, the cases in the original code, which can break the code, are
written, and what to do in that scenario by the program.
finally: The code in the finally block will execute whether or not an exception
has been encountered by the program.

The same has been illustrated in the image below:

Example:

Page 25 © Copyright by Interviewbit

Python Cheat Sheet

divide(4, 2) will return 2 and print Division Complete
divide(4, 0) will print error and Division Complete
Finally block will be executed in all cases
def divide(a, denominator):
 try:
 return a / denominator
 except ZeroDivisionError as e:
 print('Divide By Zero!! Terminate!!')
 finally:
 print('Division Complete.')

17. Lists in Python

Lists are used to store multiple items in a single variable. Their usage and some
functions are shown below with examples:

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
print(example)
Output:
['Sunday', 'Monday', 'Tuesday', 'Wednesday']

Accessing elements in a List:
Accessing elements in a list basically means getting the value of an element at
some arbitrary index in the list.
Indexes are assigned on 0 based basis in python. We can also access elements in
python with negative indexes. Negative indexes represent elements, counted
from the back (end) of the list.

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
Positive Indexing
print(example[0], example[1])
Negative Indexing
print(example[-1])
Output:
Sunday Monday
Wednesday

Page 26 © Copyright by Interviewbit

Python Cheat Sheet

Slicing a List:
Slicing is the process of accessing a part or subset of a given list. The slicing is
explained in the image below:

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
Positive Slicing
print(example[0:2])
Negative Slicing
print(example[-3:-1])
Output:
['Sunday', 'Monday']
['Monday', 'Tuesday']

Changing Values in a List:
We can change values at some particular index in a list by accessing the element
with [] and then setting it to some other value.

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
print(example)
example[0] = "Saturday"
print(example)
Output:
['Sunday', 'Monday', 'Tuesday', 'Wednesday']
['Saturday', 'Monday', 'Tuesday', 'Wednesday']

Page 27 © Copyright by Interviewbit

Python Cheat Sheet

List Concatenation and Replication:
When we merge the contents of 2 lists into one list, it is called list concatenation.

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
example1 = ["Weekdays", "Weekends"]
Concatenation
example = example + example1
print(example)
Output:
['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Weekdays', 'Weekends']

Copying the contents of a list, some finite number of times into the same or some list
is called list replication.

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
example1 = ["Weekdays", "Weekends"]
Replication
example1 = example1 * 3
print(example1)
Output:
['Weekdays', 'Weekends', 'Weekdays', 'Weekends', 'Weekdays', 'Weekends']

Delete values from Lists:
We can delete a particular element from a list by using the del keyword.

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
print(example)
del example[2]
print(example)
Output:
['Sunday', 'Monday', 'Tuesday', 'Wednesday']
['Sunday', 'Monday', 'Wednesday']

Looping through Lists:
The below example shows how we can iterate over all the elements present in a
list.

Page 28 © Copyright by Interviewbit

Python Cheat Sheet

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
for ex in example:
 print(ex)

Output:
Sunday
Monday
Tuesday
Wednesday

in and not in keywords:
With the in keyword, we can check if some particular element is present in the given
python variable.
Similar to the not in keyword, we can check if some particular element is not present
in the given python variable.

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
print("Sunday" in example)
print("Hello" not in example)
Output:
True
True

Adding Values in Lists:
insert(): This function inserts an element into a particular index of a list.

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
print(example)
example.insert(1, 'Days')
print(example)
Output:
['Sunday', 'Monday', 'Tuesday', 'Wednesday']
['Sunday', 'Days', 'Monday', 'Tuesday', 'Wednesday']

append(): This function appends an element at the back of a list.

Page 29 © Copyright by Interviewbit

Python Cheat Sheet

example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
print(example)
example.append('Days')
print(example)
Output:
['Sunday', 'Monday', 'Tuesday', 'Wednesday']
['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Days']

Sorting a List:
Sorting a list means arranging the elements of the list in some particular order.
We sort a list by using the sort() function.

Sorts in lexicographical order
example = ["Sunday", "Monday", "Tuesday", "Wednesday"];
print(example)
Sort in ascending order
example.sort()
print(example)
Sort in descending order
example.sort(reverse = True)
print(example)

example = [1, 5, 3, 7, 2]
Sort in ascending order
example.sort()
print(example)
Sort in descending order
example.sort(reverse = True)
print(example)
Output:
['Sunday', 'Monday', 'Tuesday', 'Wednesday']
['Monday', 'Sunday', 'Tuesday', 'Wednesday']
['Wednesday', 'Tuesday', 'Sunday', 'Monday']
[1, 2, 3, 5, 7]
[7, 5, 3, 2, 1]

18. Tuples in Python

Tuples are entities in Python that work almost similar to that of lists, but differ in the
main feature from lists, is in that they are inmutable.

They are initialized by writing the elements of the tuple with (), separated by
commas.

Page 30 © Copyright by Interviewbit

Python Cheat Sheet

Defining and Initializing a tuple called example
example = ("First", "Second", "Third", "Fourth")
print(example)
print(example[1:3])
Output:
('First', 'Second', 'Third', 'Fourth')
('Second', 'Third')

Type Converting between Tuples, Lists, and Strings:

Convert list to a tuple
tuple(['first', 'second', 'third'])
Convert tuple to a list
list(('first', 'second', 'third'))
Convert string to a list
list("Scaler")

19. Python Dictionaries

Dictionaries in Python are equivalent to Maps in C++/JAVA. They are used to store
data in key-value pairs.

Printing key and values in dictionaries:

To print the keys of the dictionary, use the .keys() method and to print the values, use
.values() method.

Page 31 © Copyright by Interviewbit

dict = {'first' : 'sunday', 'second' : 'monday', 'third' : 'tuesday'}
dict.keys() method will print only the keys of the dictionary
for key in dict.keys():
 print(key)
dict.values() method will print only the values of the corressponding keys of the dic
for value in dict.values():
 print(value)

Output:
first
second
third
sunday
monday
tuesday

Python Cheat Sheet

Update key value in dictionary:

Update key value which is not present in dictionary:
We can update a key value in a dictionary by accessing the key withing [] and
setting it to a value.

dict = {'first' : 'sunday', 'second' : 'monday', 'third' : 'tuesday'}
for item in dict.items():
 print(item)
dict['fourth'] = 'wednesday'
for item in dict.items():
 print(item)
Output:
 ('first', 'sunday')
 ('second', 'monday')
 ('third', 'tuesday')
 ('first', 'sunday')
 ('second', 'monday')
 ('third', 'tuesday')
 ('fourth', 'wednesday')

Update key value which is present in the dictionary:
We can update a key value in a dictionary, when the key is present in the exact
same way as we update a key, when the key is not present in the dictionary.

dict = {'first' : 'sunday', 'second' : 'monday', 'third' : 'tuesday'}
for item in dict.items():
 print(item)
dict['third'] = 'wednesday'
for item in dict.items():
 print(item)
Output:
 ('first', 'sunday')
 ('second', 'monday')
 ('third', 'tuesday')
 ('first', 'sunday')
 ('second', 'monday')
 ('third', 'wednesday')

Delete key-value pair from dictionary:
We can delete a key-value pair from a dictionary using the del keyword followed
by the key value to be deleted enclosed in [].

Page 32 © Copyright by Interviewbit

Python Cheat Sheet

dict = {'first' : 'sunday', 'second' : 'monday', 'third' : 'tuesday'}
for item in dict.items():
 print(item)
del dict['third']
for item in dict.items():
 print(item)
Output:
 ('first', 'sunday')
 ('second', 'monday')
 ('third', 'tuesday')
 ('first', 'sunday')
 ('second', 'monday')

Merging 2 dictionaries

We can merge 2 dictionaries into 1 by using the update() method.

dict1 = {'first' : 'sunday', 'second' : 'monday', 'third' : 'tuesday'}
dict2 = {1: 3, 2: 4, 3: 5}
dict1.update(dict2)
print(dict1)
Output:
{'first': 'sunday', 'second': 'monday', 'third': 'tuesday', 1: 3, 2: 4, 3: 5}

20. Sets in Python

Initializing Sets:

Sets are initialized using curly braces {} or set() in python.

A python set is basically an unordered collection of unique values, i.e. it will
automatically remove duplicate values from the set.

s = {1, 2, 3}
print(s)
s = set([1, 2, 3])
print(s)
s = {1, 2, 3, 3, 2, 4, 5, 5}
print(s)
Output:
{1, 2, 3}
{1, 2, 3}
{1, 2, 3, 4, 5}

Page 33 © Copyright by Interviewbit

Python Cheat Sheet

Inserting elements in set:

We can insert a single element into a set using the add function of sets.

s = {1, 2, 3, 3, 2, 4, 5, 5}
print(s)
Insert single element
s.add(6)
print(s)
Output:
{1, 2, 3, 4, 5}
{1, 2, 3, 4, 5, 6}

To insert multiple elements into a set, we use the update function and pass a list of
elements to be inserted as parameters.

s = {1, 2, 3, 3, 2, 4, 5, 5}
Insert multiple elements
s.update([6, 7, 8])
print(s)
Output:
{1, 2, 3, 4, 5, 6, 7, 8}

Deleting elements from the set:

We can delete elements from a set using either the remove() or the discard()
function.

s = {1, 2, 3, 3, 2, 4, 5, 5}
print(s)
Remove will raise an error if the element is not in the set
s.remove(4)
print(s)
Discard doesn't raise any errors
s.discard(1)
print(s)
Output:
{1, 2, 3, 4, 5}
{1, 2, 3, 5}
{2, 3, 5}

Operators in sets:

Page 34 © Copyright by Interviewbit

Python Cheat Sheet

The below table shows the operators used for sets:

Operators What it does

| (Union) Returns all the unique elements in both
the sets.

& (Intersection) Returns all the elements common to
both the sets.

- (Difference) Returns the elements that are unique to
the first set

^(Symmetric
Difference)

Returns all the elements not common to
both the sets.

The set operators are represented in the Venn Diagram below:

Page 35 © Copyright by Interviewbit

Python Cheat Sheet

Examples:

a = {1, 2, 3, 3, 2, 4, 5, 5}
b = {4, 6, 7, 9, 3}
Performs the Intersection of 2 sets and prints them
print(a & b)
Performs the Union of 2 sets and prints them
print(a | b)
Performs the Difference of 2 sets and prints them
print(a - b)
Performs the Symmetric Difference of 2 sets and prints them
print(a ^ b)
Output:
{3, 4}
{1, 2, 3, 4, 5, 6, 7, 9}
{1, 2, 5}
{1, 2, 5, 6, 7, 9}

21. Comprehensions in Python

List Comprehensions:
It is a shorter syntax to create a new list using values of an existing list.

a = [0, 1, 2, 3]
b will store values which are 1 greater than the values stored in a
b = [i + 1 for i in a]
print(b)
Output:
[1, 2, 3, 4]

Set Comprehension:
 It is a shorter syntax to create a new set using values of an existing set.

 a = {0, 1, 2, 3}
 # b will store squares of the elements of a
 b = {i ** 2 for i in a}
 print(b)
 Output:
 {0, 1, 4, 9}

Page 36 © Copyright by Interviewbit

Python Cheat Sheet

Dict Comprehension:
 It is a shorter syntax to create a new dictionary using values of an existing
dictionary.

 a = {'Hello':'World', 'First': 1}
 # b stores elements of a in value-key pair format
 b = {val: k for k , val in a.items()}
 print(b)
 Output:
 {'World': 'Hello', 1: 'First'}

22. String Manipulation in Python

Escape Sequences:
Escape Sequences are used to print certain characters to the output stream which
carry special meaning to the language compiler.

Examples:

Escape Sequence Results in

\t Tab Space

\n Newline

\\ Backslash

\’ Single Quote

Multiline Strings:
Multiline Strings are used in python through triple quotes '''

Example:

Page 37 © Copyright by Interviewbit

Python Cheat Sheet

a = ''' Hello
 World!
 This is a
 Multiline String.'''

print(a)
Output:
Hello
World!
This is a
Multiline String.

Strings Indexing:
Strings in Python are indexed the same way as a list of characters, based on 0-based
indexing. We can access elements of a string at some index by using the [] operators.

Consider an example of the string value Python .

a = "Python"
print(a[0], a[2], a[4])
print(a[-1], a[-3], a[-5])
Output:
P t o
n h y

Strings Slicing:

Page 38 © Copyright by Interviewbit

Python Cheat Sheet

Slicing is also done the same way as in lists.

a = "Hello"
Slices the string from 0 to 3 indexes
print(a[0:3])
Slices the string from 3 to -1(same as 4) indexes
print(a[3:-1])
Output:
Hel
l

Case Conversion Functions:
The upper() and lower() functions are used to convert a string of letters into
uppercase or lowercase respectively.

The isupper() and islower() functions are used to check if a string is in all uppercase or
lowercase respectively.

a = "Hello"
print(a)
Converts string to uppercase
print(a.upper())
Converts string to lowercase
print(a.lower())
Checks if string is uppercase
print(a.isupper())
Checks if string is lowercase
print(a.islower())
Output:
Hello
HELLO
hello
False
False

Other similar functions:

Page 39 © Copyright by Interviewbit

Python Cheat Sheet

Function Explanation

isspace() Returns True if all characters in string are
whitespaces

isalnum() Returns True if given string is alphanumeric

isalpha() Returns True if given character is alphabet

isTitle()
Returns True if string starts with an uppercase
letter and then rest of the characters are
lowercase

join() and split() Functions:
join() function merges elements of a list with some delimiter string, and returns the
result as a string.

list = ["One", "Two", "Three"]
join function
s = ','.join(list)
print(s)
Output:
One,Two,Three

split() function splits the into tokens, based on some delimiters and returns the result
as a list.

split function
newList = s.split(',')
print(newList)
Output:
['One', 'Two', 'Three']

Page 40 © Copyright by Interviewbit

Python Cheat Sheet

In general, a string can be split to list using split() method and a list can be joined to
string using the join() method as shown in the image below:

String Formatting:
String Formatting is done with the str.format() function.

Template Strings:
It is recommended to be used when formatting strings generated by users. They
make the code less complex so are easier to understand. They can be used by
importing the Template class from the string module.

Example:

Page 41 © Copyright by Interviewbit

first = "first"
second = "second"
s = "Sunday is the {} day of the week, whereas Monday is the {} day of the week".format
print(s)
Output:
Sunday is the first day of the week, whereas Monday is the second day of the week

Python Cheat Sheet

>>> from string import Template
>>> name = 'Scaler'
>>> t = Template('Hey $name!')
>>> t.substitute(name = name)
'Hey Scaler!'

23. Formatting Dates in Python

To handle date and time operations in Python, we use the datetime module.

time class: We can represent time values using the time class.
 Example:

 import datetime
 tm = datetime.time(1, 30, 11, 22)
 print(tm)
 Output:
 01:30:11.000022

date class: We can represent date values using the date class.
 Example:

Conversion from date to time: We can convert a date to its corresponding time
using the strptime() function.

 Example:

 from datetime import datetime
 print(datetime.strptime('15/11/2000', '%d/%m/%Y'))
 Output:
 2000-11-15 00:00:00

Page 42 © Copyright by Interviewbit

 import datetime
 date = datetime.date(2000, 11, 16)
 print('Date date is ', date.day, ' day of ', date.month, ' month of the year ', date
 Output:
 Date date is 16 day of 11 month of the year 2000

Python Cheat Sheet

time.str�ime() in Python: It converts a tuple or struct_time representing the
time into a string object.

 For example:

 from time import gmtime, strftime
 s = strftime("%a, %d %b %Y %H:%M:%S + 1010", gmtime())
 print(s)
 Output:
 Sun, 28 Nov 2021 18:51:24 + 1010

24. Python RegEx

Regex Matching
The re module in python allows us to perform regex matching operations.

import re
landline = re.compile(r'\d\d\d\d-\d\d\d\d')
num = landline.search('LandLine Number is 2435-4153')
print('Landline Number is: {}'.format(num.group()))
Output:
Landline Number is: 2435-4153

The above example landline number from the string and stores it appropriately in the
num variable using regex matching.

Parenthesis Grouping
A group is a part of a regex pattern enclosed in parenthesis (). We can put matches
into different groups using the parenthesis (). We can access the groups using group()
function.

Page 43 © Copyright by Interviewbit

Python Cheat Sheet

Regex Symbols in Python
There are a lot of regex symbols that have different functionalities so they are
mentioned in the table below:

Page 44 © Copyright by Interviewbit

import re
landline = re.compile(r'(\d\d\d\d)-(\d\d\d\d)')
num = landline.search('LandLine Number is 2435-4153')
This will print the first group, which is the entire regex enclosed in the brackets
print(num.group(0))
This will print the second group, which is the nested regex enclosed in the 1st set o
print(num.group(1))
This will print the third group, which is the nested regex enclosed in the 2nd set of
print(num.group(2))
Output:
2435-4153
2435
4153

Python Cheat Sheet

Symbol Matches

+ One or More of the preceding group

* Zero or More of preceding group

? Zero or One of preceding group

^name String must begin with the name

name$ String must end with the name

. Any character except \n

{n} Exactly n of preceding group

{n, } >= n of preceding group

{,n} [0, m] of preceding group

{n, m} [n, m] of preceding group

*? Non Greedy matching of the preceding group

[abc] Any character enclosed in the brackets

[^abc] Any character not enclosed in the brackets

\d, \w, \s Digit, word, or space respectively.

\D, \W, \S Anything except digit, word, or space respectively

Page 45 © Copyright by Interviewbit

Python Cheat Sheet

Example:

Here we define a regex pattern,

address = "(\\d*)\\s?(.+),\\s(.+)\\s([A-Z]{2,3})\\s(\\d{4})"

From the above table, we can explain some of the symbols in this pattern:

\s?: 0 or 1 whitespace.
(\d*): 0 or more digit characters.
(.+): Greater than or equal to 1 characters.
\s: Single Whitespace
([A-Z]{2, 3}): 2 or 3 Uppercase alphabets
(\d{4}): 4 digit characters

25. Debugging in Python

Raising Exceptions with raise statement:

The raise statement is used to raise exceptions and consists of 3 components:

raise keyword
Exception() function call
Parameter of the Exception() function, which usually contains an error message.

raise Exception("Error Occurred!!")
Traceback (most recent call last):
 File "./prog.py", line 1, in <module>
Exception: Error Occurred!!

Traceback as String

There is a function in python called traceback.format_exc() which returns the
traceback displayed by Python when a raised Exception is not handled as a String
type. The Traceback Module is required to be imported for this purpose.

Example:

Page 46 © Copyright by Interviewbit

Python Cheat Sheet

import traceback
try:
 raise Exception('Error Message.')
except:
 with open('error.txt', 'w') as error_file:
 error_file.write(traceback.format_exc())
 print('The traceback info was written to error.txt.')

Output:
The traceback info was written to error.txt.

Assert Statements in Python:

Assert Statements/Assertions are widely used for debugging programs and checking
if the code is performing some operation that is obviously wrong according to the
logic of the program. The special thing about assert is that when an assert fails, the
program immediately crashes, allowing us to narrow down our search space for the
bug.
Writing an assert statement has the following components as a part of it,

assert keyword
a condition that results in a boolean value
a display message for when the assertion fails
a comma separating the condition and the display message.

>>> sum = 4
>>> assert sum == 5, 'Addition Error'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError: Addition Error

Assertions can be disabled by passing the -O option when running Python as shown in
the commands below.

$ python -Oc "assert False"
$ python -c "assert False"
Traceback (most recent call last):
 File "<string>", line 1, in <module>
AssertionError

Page 47 © Copyright by Interviewbit

Python Cheat Sheet

26. Logging in Python

Logging allows us to keep track of some events which occurs when some so�ware
runs. It becomes highly important in So�ware Development, Debugging and Running
So�wares.

Levels of Logging:

Described in order of increasing importance

Page 48 © Copyright by Interviewbit

import logging
Create and configues the logger
logging.basicConfig(filename="newfile.log", format='%(asctime)s %(message)s', filemode=
Creates logging object
logg = logging.getLogger()
Sets the level of logging to DEBUG
logg.setLevel(logging.DEBUG)
Messages
logg.debug("Debug Message")
logger.warning("Its a Warning")
logger.info("Just an information")

Python Cheat Sheet

Level Function What it does

DEBUG logging.debug()

Used for tracking
any events that
occur during
program execution

INFO logging.info()

Confirms the
working of things
at the end of the
module in the
program.

WARNING logging.warning()

Used to flag some
issues that might
hinder the
program from
working in the
future, but allows
it to work for now.

ERROR logging.error()

Records errors that
might have made
the program fail at
some point.

CRITICAL logging.critical()

Indicates or flags
fatal errors in the
program.

27. Lambda Function in Python

Page 49 © Copyright by Interviewbit

Python Cheat Sheet

These are small anonymous functions in python, which can take any number of
arguments but returns only 1 expression.

Let us understand it with an example,

Consider the function which multiplies 2 numbers:

def mul(a, b):
 return a * b
print(mul(3, 5))
Output:
15

The equivalent Lambda function for this function will be:

mul = lambda a, b: a * b
print(mul(3, 5))
Output:
15

The syntax for this will be as shown below:

Page 50 © Copyright by Interviewbit

Python Cheat Sheet

Similarly, other functions can be written as Lambda functions too, resulting in
shorter codes for the same program logic.

28. Ternary Operator in Python

The ternary operator is used as an alternative to the if-else conditional statements
and provides a way to write a short crisp one-liner statement.

The syntax is as follows:

<expression 1> if <condition> else <expression 2>

f = 2
s = 2
if the sum of f and s is greater than 0 the sum
is printed, else 0 is printed
print(f + s if (f + s > 0) else 0)
Output:
4

29. *args and **kwargs in Python

We can pass a variable number of arguments to a function using special symbols
called *args and **kwargs.

The usage is as follows:

 *args: For non-keyword arguments.
 Example:

 # the function will take in a variable number of arguments
 # and print all of their values
 def tester(*argv):
 for arg in argv:
 print(arg)
 tester('Sunday', 'Monday', 'Tuesday', 'Wednesday')
 Output:
 Sunday
 Monday
 Tuesday
 Wednesday

Page 51 © Copyright by Interviewbit

Python Cheat Sheet

 **kwargs: For keyword arguments.
 Example:

 # The function will take variable number of arguments
 # and print them as key value pairs
 def tester(**kwargs):
 for key, value in kwargs.items():
 print(key, value)
 tester(Sunday = 1, Monday = 2, Tuesday = 3, Wednesday = 4)
 Output:
 Sunday 1
 Monday 2
 Tuesday 3
 Wednesday 4

30. if __name__ == "__main__" in Python

__main__ is the name of the scope in which the top-level code executes. It can check
if it is running in its own scope by checking its own __name__.
Format of checking:

>>> if __name__ == "__main__":
... main()

31. Python Dataclasses

Python Classes used for storing data objects are called Dataclasses. They have certain
features like:

Comparison with other objects of the same type is possible.
Stores data, representing a particular data type.

Python 2.7:

The example shows the performing function of Dataclasses in older versions of
python when Dataclasses were not yet introduced.

Page 52 © Copyright by Interviewbit

Python Cheat Sheet

class Self:
 def __init__(self, x):
 self.x = x

ob = Self("One")
print(ob.x)
Output:
One

Python 3.7:

The example shows using dataclasses in newer versions of python.

@dataclass #annotation indicates that it is a dataclass module
class Self:
 x: string
ob = Self("One")
print(ob.x)
Output:
One

Note: It is compulsory to specify the datatype of each variable declared. If at any
point we don’t want to specify the type, set the type as typing.Any.

from dataclasses import dataclass
from typing import Any
@dataclass
class WithoutExplicitTypes:
 name: Any
 age: Any = 16

32. Python Virtual Environment

Virtual Environments are used to encapsulate certain Python Libraries of Python for
single project, which might not be used in other projects, rather than installing those
dependencies globally.

Installation Steps:

pip install virtualenv

Page 53 © Copyright by Interviewbit

Python Cheat Sheet

pip install virtualenvwrapper-win

Usage Steps:

mkvirtualenv Test # Make virtual environment called Test
#setprojectdir .

deactivate # To move to something else in the command #line.

workon Test # Activate environment

33. Python Commands

Magic Commands are one of the new features added to the python shell. Basically,
they are enhancements over the normal python code, provided by the IPython
Kernel. The main syntax for these commands is that they are prefixed by as “%”
character. They prove useful in solving many common problems we encounter while
coding and also provide us some versatile shortcuts.
There are main kinds of commands:

%prefix: The command will operate only on the given single line of code.
%%prefix: The command will operate on the entire code block.

Some examples of these commands in Python are:

%run: It is used for running an external file in Python.

def runner():
 print("Hello World")

runner()
%run runner.py
Output:
Hello World

%%time: This allows us to track the amount of time taken by our code for
execution.

Page 54 © Copyright by Interviewbit

Python Cheat Sheet

%%time
for i in range(10000):
 a = a + i**2
Output:
CPU Times: user: 3.72 ms, sys: 9us, , total: 3.73ms, Wall time: 3.75ms

 %%writefile: This command will copy content from our current code cell to
another external file.

%%writefile code.py
def func():
 print("Hello")
func()
Output:
Overwriting code.py

 $pycat: This command is used to display the contents of an external file.

%pycat code.py
def func():
 print("Hello")
func()

%who: This command lists all the variables in the Python notebook.

a = "hello"
b = 5
c = 1
%who
Output:
a b c

 %%html: This command will let us write and execute html code in the current
cell.

Page 55 © Copyright by Interviewbit

Python Cheat Sheet

%%html
<html>
<body>
<table>
 <tr>
 <th>Name</th>
 <th>Country</th>
 <th>Age</th>
 </tr>
 <tr>
 <td>Sid</td>
 <td>India</td>
 <td>22</td>
 </tr>
 <tr>
 <td>Dave</td>
 <td>UK</td>
 <td>28</td>
 </tr>
</table>
</body>
</html>

Output:

%env: This command allows us to list all the environment variables, set a value
for such a variable, and get the value of such a variable.

Page 56 © Copyright by Interviewbit

Python Cheat Sheet

%pinfo: This command provides detailed information regarding the object
passed along with it. It works similar to that of the object? function.

Note: All the magic commands can be listed by using the %lsmagic command.

Some other useful tools for Python

Page 57 © Copyright by Interviewbit

Python Cheat Sheet

pipenv: It is a packaging tool for python aimed to solve common problems
which are associated with the typical program workflow.
poetry: It is a dependency management and packaging tool in Python.

Conclusion

We can conclude that Python is a robust, high-level, interpreted programming
language. It is also an Object Oriented Programming Language that strongly follows
all OOPs principles. It has various inbuilt powerful modules that follow simple syntax
which makes it appealing to both beginners and experienced folks alike. A vast
collection of libraries and functions makes the development of any sort much easier
in Python. In this cheat sheet, we have covered the most common fundamentals of
python language that would help you kickstart your career in python.

Useful Resources:

Python Interview Questions
Python Projects
Python Developer: Career Guide
Python Developer Skills
Fast Track Python

Page 58 © Copyright by Interviewbit

C Interview Questions Php Interview Questions C Sharp Interview Questions

Web Api Interview
Questions

Hibernate Interview
Questions

Node Js Interview Questions

Cpp Interview Questions Oops Interview Questions Devops Interview Questions

Machine Learning Interview
Questions

Docker Interview Questions Mysql Interview Questions

Css Interview Questions Laravel Interview Questions Asp Net Interview Questions

Django Interview Questions Dot Net Interview Questions Kubernetes Interview
Questions

Operating System Interview
Questions

React Native Interview
Questions

Aws Interview Questions

Git Interview Questions Java 8 Interview Questions Mongodb Interview
Questions

Dbms Interview Questions Spring Boot Interview
Questions

Power Bi Interview Questions

Pl Sql Interview Questions Tableau Interview
Questions

Linux Interview Questions

Ansible Interview Questions Java Interview Questions Jenkins Interview Questions

Page 59 © Copyright by Interviewbit

Links to More Interview
Questions

