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Preface

This book is aimed at the data scientist with some familiarity with the R
programming language, and with some prior (perhaps spotty or ephemeral)
exposure to statistics. Both of us came to the world of data science from the world
of statistics, so we have some appreciation of the contribution that statistics can
make to the art of data science. At the same time, we are well aware of the
limitations of traditional statistics instruction: statistics as a discipline is a century
and a half old, and most statistics textbooks and courses are laden with the
momentum and inertia of an ocean liner.

Two goals underlie this book:
To lay out, in digestible, navigable, and easily referenced form, key concepts
from statistics that are relevant to data science.

To explain which concepts are important and useful from a data science
perspective, which are less so, and why.
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What to Expect

KEY TERMS

Data science is a fusion of multiple disciplines, including statistics, computer science, information
technology, and domain-specific fields. As a result, several different terms could be used to reference a
given concept. Key terms and their synonyms will be highlighted throughout the book in a sidebar such as
this.
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Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.
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Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download
at https://github.com/andrewgbruce/statistics-for-data-scientists.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Practical Statistics for Data
Scientists by Peter Bruce and Andrew Bruce (O’Reilly). Copyright 2017 Peter
Bruce and Andrew Bruce, 978-1-491-95296-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.
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Safari® Books Online
NOTE

Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise,
government, education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more. For more information about Safari Books Online,
please visit us online.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
http://bit.ly/practicalStats_for_DataScientists.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia



Acknowledgments
The authors acknowledge the many people who helped make this book a reality.

Gerhard Pilcher, CEO of the data mining firm Elder Research, saw early drafts of
the book and gave us detailed and helpful corrections and comments. Likewise,
Anya McGuirk and Wei Xiao, statisticians at SAS, and Jay Hilfiger, fellow
O’Reilly author, provided helpful feedback on initial drafts of the book.

At O’Reilly, Shannon Cutt has shepherded us through the publication process with
good cheer and the right amount of prodding, while Kristen Brown smoothly took
our book through the production phase. Rachel Monaghan and Eliahu Sussman
corrected and improved our writing with care and patience, while Ellen
Troutman-Zaig prepared the index. We also thank Marie Beaugureau, who
initiated our project at O’Reilly, as well as Ben Bengfort, O’Reilly author and
statistics.com instructor, who introduced us to O’Reilly.

We, and this book, have also benefited from the many conversations Peter has had
over the years with Galit Shmueli, coauthor on other book projects.

Finally, we would like to especially thank Elizabeth Bruce and Deborah Donnell,
whose patience and support made this endeavor possible.



Chapter 1. Exploratory Data Analysis

As a discipline, statistics has mostly developed in the past century. Probability
theory — the mathematical foundation for statistics — was developed in the 17th
to 19th centuries based on work by Thomas Bayes, Pierre-Simon Laplace, and
Carl Gauss. In contrast to the purely theoretical nature of probability, statistics is
an applied science concerned with analysis and modeling of data. Modern
statistics as a rigorous scientific discipline traces its roots back to the late 1800s
and Francis Galton and Karl Pearson. R. A. Fisher, in the early 20th century, was
a leading pioneer of modern statistics, introducing key ideas of experimental
design and maximum likelihood estimation. These and many other statistical
concepts live largely in the recesses of data science. The main goal of this book is
to help illuminate these concepts and clarify their importance — or lack thereof
— in the context of data science and big data.

This chapter focuses on the first step in any data science project: exploring the
data. Exploratory data analysis, or EDA, is a comparatively new area of
statistics. Classical statistics focused almost exclusively on inference, a
sometimes complex set of procedures for drawing conclusions about large
populations based on small samples. In 1962, John W. Tukey (Figure 1-1) called
for a reformation of statistics in his seminal paper “The Future of Data Analysis”
[Tukey-1962]. He proposed a new scientific discipline called data analysis that
included statistical inference as just one component. Tukey forged links to the
engineering and computer science communities (he coined the terms bit, short for
binary digit, and software), and his original tenets are suprisingly durable and
form part of the foundation for data science. The field of exploratory data analysis
was established with Tukey’s 1977 now-classic book Exploratory Data Analysis
[Tukey-1977].



Figure 1-1. John Tukey, the eminent statistician whose ideas developed over 50 years ago form the
foundation of data science.

With the ready availablility of computing power and expressive data analysis
software, exploratory data analysis has evolved well beyond its original scope.
Key drivers of this discipline have been the rapid development of new technology,
access to more and bigger data, and the greater use of quantitative analysis in a
variety of disciplines. David Donoho, professor of statistics at Stanford
University and former undergraduate student of Tukey’s, authored an excellent
article based on his presentation at the Tukey Centennial workshop in Princeton,
New Jersey [Donoho-2015]. Donoho traces the genesis of data science back to
Tukey’s pioneering work in data analysis.



Elements of Structured Data
Data comes from many sources: sensor measurements, events, text, images, and
videos. The Internet of Things (IoT) is spewing out streams of information. Much
of this data is unstructured: images are a collection of pixels with each pixel
containing RGB (red, green, blue) color information. Texts are sequences of
words and nonword characters, often organized by sections, subsections, and so
on. Clickstreams are sequences of actions by a user interacting with an app or
web page. In fact, a major challenge of data science is to harness this torrent of
raw data into actionable information. To apply the statistical concepts covered in
this book, unstructured raw data must be processed and manipulated into a
structured form — as it might emerge from a relational database — or be
collected for a study.

KEY TERMS FOR DATA TYPES

Continuous
Data that can take on any value in an interval.

Synonyms
interval, float, numeric

Discrete
Data that can take on only integer values, such as counts.

Synonyms
integer, count

Categorical
Data that can take on only a specific set of values representing a set of possible categories.

Synonyms
enums, enumerated, factors, nominal, polychotomous

Binary
A special case of categorical data with just two categories of values (0/1, true/false).

Synonyms
dichotomous, logical, indicator, boolean

Ordinal
Categorical data that has an explicit ordering.



Synonyms
ordered factor

There are two basic types of structured data: numeric and categorical. Numeric
data comes in two forms: continuous, such as wind speed or time duration, and
discrete, such as the count of the occurrence of an event. Categorical data takes
only a fixed set of values, such as a type of TV screen (plasma, LCD, LED, etc.)
or a state name (Alabama, Alaska, etc.). Binary data is an important special case
of categorical data that takes on only one of two values, such as 0/1, yes/no, or
true/false. Another useful type of categorical data is ordinal data in which the
categories are ordered; an example of this is a numerical rating (1, 2, 3, 4, or 5).

Why do we bother with a taxonomy of data types? It turns out that for the purposes
of data analysis and predictive modeling, the data type is important to help
determine the type of visual display, data analysis, or statistical model. In fact,
data science software, such as R and Python, uses these data types to improve
computational performance. More important, the data type for a variable
determines how software will handle computations for that variable.

Software engineers and database programmers may wonder why we even need the
notion of categorical and ordinal data for analytics. After all, categories are
merely a collection of text (or numeric) values, and the underlying database
automatically handles the internal representation. However, explicit identification
of data as categorical, as distinct from text, does offer some advantages:

Knowing that data is categorical can act as a signal telling software how
statistical procedures, such as producing a chart or fitting a model, should
behave. In particular, ordinal data can be represented as an ordered.factor
in R and Python, preserving a user-specified ordering in charts, tables, and
models.

Storage and indexing can be optimized (as in a relational database).

The possible values a given categorical variable can take are enforced in the
software (like an enum).

The third “benefit” can lead to unintended or unexpected behavior: the default
behavior of data import functions in R (e.g., read.csv) is to automatically
convert a text column into a factor. Subsequent operations on that column will



assume that the only allowable values for that column are the ones originally
imported, and assigning a new text value will introduce a warning and produce an
NA (missing value).

KEY IDEAS

Data is typically classified in software by type.

Data types include continuous, discrete, categorical (which includes binary), and ordinal.

Data typing in software acts as a signal to the software on how to process the data.



Further Reading
Data types can be confusing, since types may overlap, and the taxonomy in
one software may differ from that in another. The R-Tutorial website covers
the taxonomy for R.

Databases are more detailed in their classification of data types,
incorporating considerations of precision levels, fixed- or variable-length
fields, and more; see the W3Schools guide for SQL.



Rectangular Data
The typical frame of reference for an analysis in data science is a rectangular
data object, like a spreadsheet or database table.

KEY TERMS FOR RECTANGULAR DATA

Data frame
Rectangular data (like a spreadsheet) is the basic data structure for statistical and machine
learning models.

Feature
A column in the table is commonly referred to as a feature.

Synonyms
attribute, input, predictor, variable

Outcome
Many data science projects involve predicting an outcome — often a yes/no outcome (in Table 1-
1, it is “auction was competitive or not”). The features are sometimes used to predict the outcome
in an experiment or study.

Synonyms
dependent variable, response, target, output

Records
A row in the table is commonly referred to as a record.

Synonyms
case, example, instance, observation, pattern, sample

Rectangular data is essentially a two-dimensional matrix with rows indicating
records (cases) and columns indicating features (variables). The data doesn’t
always start in this form: unstructured data (e.g., text) must be processed and
manipulated so that it can be represented as a set of features in the rectangular
data (see “Elements of Structured Data”). Data in relational databases must be
extracted and put into a single table for most data analysis and modeling tasks.

In Table 1-1, there is a mix of measured or counted data (e.g., duration and price),
and categorical data (e.g., category and currency). As mentioned earlier, a special
form of categorical variable is a binary (yes/no or 0/1) variable, seen in the
rightmost column in Table 1-1 — an indicator variable showing whether an



auction was competitive or not.

Table 1-1. A typical data format

Category currency sellerRating Duration endDay ClosePrice OpenPrice Competitive?

Music/Movie/Game US 3249 5 Mon 0.01 0.01 0

Music/Movie/Game US 3249 5 Mon 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 1

Automotive US 3115 7 Tue 0.01 0.01 1



Data Frames and Indexes
Traditional database tables have one or more columns designated as an index.
This can vastly improve the efficiency of certain SQL queries. In Python, with the
pandas library, the basic rectangular data structure is a DataFrame object. By
default, an automatic integer index is created for a DataFrame based on the order
of the rows. In pandas, it is also possible to set multilevel/hierarchical indexes to
improve the efficiency of certain operations.

In R, the basic rectangular data structure is a data.frame object. A data.frame
also has an implicit integer index based on the row order. While a custom key can
be created through the row.names attribute, the native R data.frame does not
support user-specified or multilevel indexes. To overcome this deficiency, two
new packages are gaining widespread use: data.table and dplyr. Both support
multilevel indexes and offer significant speedups in working with a data.frame.



TERMINOLOGY DIFFERENCES
Terminology for rectangular data can be confusing. Statisticians and data scientists use different
terms for the same thing. For a statistician, predictor variables are used in a model to predict a
response or dependent variable. For a data scientist, features are used to predict a target. One
synonym is particularly confusing: computer scientists will use the term sample for a single row; a
sample to a statistician means a collection of rows.



Nonrectangular Data Structures
There are other data structures besides rectangular data.

Time series data records successive measurements of the same variable. It is the
raw material for statistical forecasting methods, and it is also a key component of
the data produced by devices — the Internet of Things.

Spatial data structures, which are used in mapping and location analytics, are
more complex and varied than rectangular data structures. In the object
representation, the focus of the data is an object (e.g., a house) and its spatial
coordinates. The field view, by contrast, focuses on small units of space and the
value of a relevant metric (pixel brightness, for example).

Graph (or network) data structures are used to represent physical, social, and
abstract relationships. For example, a graph of a social network, such as
Facebook or LinkedIn, may represent connections between people on the network.
Distribution hubs connected by roads are an example of a physical network.
Graph structures are useful for certain types of problems, such as network
optimization and recommender systems.

Each of these data types has its specialized methodology in data science. The
focus of this book is on rectangular data, the fundamental building block of
predictive modeling.



GRAPHS IN STATISTICS
In computer science and information technology, the term graph typically refers to a depiction of
the connections among entities, and to the underlying data structure. In statistics, graph is used to
refer to a variety of plots and visualizations, not just of connections among entities, and the term
applies just to the visualization, not to the data structure.

KEY IDEAS

The basic data structure in data science is a rectangular matrix in which rows are records and
columns are variables (features).

Terminology can be confusing; there are a variety of synonyms arising from the different disciplines
that contribute to data science (statistics, computer science, and information technology).



Further Reading
Documentation on data frames in R

Documentation on data frames in Python



Estimates of Location
Variables with measured or count data might have thousands of distinct values. A
basic step in exploring your data is getting a “typical value” for each feature
(variable): an estimate of where most of the data is located (i.e., its central
tendency).

KEY TERMS FOR ESTIMATES OF LOCATION

Mean
The sum of all values divided by the number of values.

Synonyms
average

Weighted mean
The sum of all values times a weight divided by the sum of the weights.

Synonyms
weighted average

Median
The value such that one-half of the data lies above and below.

Synonyms
50th percentile

Weighted median
The value such that one-half of the sum of the weights lies above and below the sorted data.

Trimmed mean
The average of all values after dropping a fixed number of extreme values.

Synonyms
truncated mean

Robust
Not sensitive to extreme values.

Synonyms
resistant

Outlier
A data value that is very different from most of the data.

Synonyms



extreme value

At first glance, summarizing data might seem fairly trivial: just take the mean of
the data (see “Mean”). In fact, while the mean is easy to compute and expedient to
use, it may not always be the best measure for a central value. For this reason,
statisticians have developed and promoted several alternative estimates to the
mean.



METRICS AND ESTIMATES
Statisticians often use the term estimates for values calculated from the data at hand, to draw a
distinction between what we see from the data, and the theoretical true or exact state of affairs.
Data scientists and business analysts are more likely to refer to such values as a metric. The
difference reflects the approach of statistics versus data science: accounting for uncertainty lies
at the heart of the discipline of statistics, whereas concrete business or organizational objectives
are the focus of data science. Hence, statisticians estimate, and data scientists measure.



Mean
The most basic estimate of location is the mean, or average value. The mean is the
sum of all the values divided by the number of values. Consider the following set
of numbers: {3 5 1 2}. The mean is (3 + 5 + 1 + 2) / 4 = 11 / 4 = 2.75. You will
encounter the symbol  (pronounced “x-bar”) to represent the mean of a sample
from a population. The formula to compute the mean for a set of n values 

 is:

NOTE
N (or n) refers to the total number of records or observations. In statistics it is capitalized if it is
referring to a population, and lowercase if it refers to a sample from a population. In data science,
that distinction is not vital so you may see it both ways.

A variation of the mean is a trimmed mean, which you calculate by dropping a
fixed number of sorted values at each end and then taking an average of the
remaining values. Representing the sorted values by  where 

 is the smallest value and  the largest, the formula to compute the trimmed
mean with  smallest and largest values omitted is:

A trimmed mean eliminates the influence of extreme values. For example, in
international diving the top and bottom scores from five judges are dropped, and
the final score is the average of the three remaining judges [Wikipedia-2016].



This makes it difficult for a single judge to manipulate the score, perhaps to favor
his country’s contestant. Trimmed means are widely used, and in many cases, are
preferable to use instead of the ordinary mean: see “Median and Robust
Estimates” for further discussion.

Another type of mean is a weighted mean, which you calculate by multiplying
each data value  by a weight  and dividing their sum by the sum of the
weights. The formula for a weighted mean is:

There are two main motivations for using a weighted mean:
Some values are intrinsically more variable than others, and highly variable
observations are given a lower weight. For example, if we are taking the
average from multiple sensors and one of the sensors is less accurate, then
we might downweight the data from that sensor.

The data collected does not equally represent the different groups that we are
interested in measuring. For example, because of the way an online
experiment was conducted, we may not have a set of data that accurately
reflects all groups in the user base. To correct that, we can give a higher
weight to the values from the groups that were underrepresented.
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Median and Robust Estimates
The median is the middle number on a sorted list of the data. If there is an even
number of data values, the middle value is one that is not actually in the data set,
but rather the average of the two values that divide the sorted data into upper and
lower halves. Compared to the mean, which uses all observations, the median
depends only on the values in the center of the sorted data. While this might seem
to be a disadvantage, since the mean is much more sensitive to the data, there are
many instances in which the median is a better metric for location. Let’s say we
want to look at typical household incomes in neighborhoods around Lake
Washington in Seattle. In comparing the Medina neighborhood to the Windermere
neighborhood, using the mean would produce very different results because Bill
Gates lives in Medina. If we use the median, it won’t matter how rich Bill Gates
is — the position of the middle observation will remain the same.

For the same reasons that one uses a weighted mean, it is also possible to compute
a weighted median. As with the median, we first sort the data, although each data
value has an associated weight. Instead of the middle number, the weighted
median is a value such that the sum of the weights is equal for the lower and upper
halves of the sorted list. Like the median, the weighted median is robust to
outliers.

Outliers
The median is referred to as a robust estimate of location since it is not influenced
by outliers (extreme cases) that could skew the results. An outlier is any value
that is very distant from the other values in a data set. The exact definition of an
outlier is somewhat subjective, although certain conventions are used in various
data summaries and plots (see “Percentiles and Boxplots”). Being an outlier in
itself does not make a data value invalid or erroneous (as in the previous example
with Bill Gates). Still, outliers are often the result of data errors such as mixing
data of different units (kilometers versus meters) or bad readings from a sensor.
When outliers are the result of bad data, the mean will result in a poor estimate of
location, while the median will be still be valid. In any case, outliers should be
identified and are usually worthy of further investigation.



ANOMALY DETECTION
In contrast to typical data analysis, where outliers are sometimes informative and sometimes a
nuisance, in anomaly detection the points of interest are the outliers, and the greater mass of
data serves primarily to define the “normal” against which anomalies are measured.

The median is not the only robust estimate of location. In fact, a trimmed mean is
widely used to avoid the influence of outliers. For example, trimming the bottom
and top 10% (a common choice) of the data will provide protection against
outliers in all but the smallest data sets. The trimmed mean can be thought of as a
compromise between the median and the mean: it is robust to extreme values in
the data, but uses more data to calculate the estimate for location.



OTHER ROBUST METRICS FOR LOCATION
Statisticians have developed a plethora of other estimators for location, primarily with the goal of
developing an estimator more robust than the mean and also more efficient (i.e., better able to
discern small location differences between data sets). While these methods are potentially useful
for small data sets, they are not likely to provide added benefit for large or even moderately sized
data sets.



Example: Location Estimates of Population and Murder Rates
Table 1-2 shows the first few rows in the data set containing population and
murder rates (in units of murders per 100,000 people per year) for each state.

Table 1-2. A few rows of the
data.frame state of population

and murder rate by state

State Population Murder rate

1 Alabama 4,779,736 5.7

2 Alaska 710,231 5.6

3 Arizona 6,392,017 4.7

4 Arkansas 2,915,918 5.6

5 California 37,253,956 4.4

6 Colorado 5,029,196 2.8

7 Connecticut 3,574,097 2.4

8 Delaware 897,934 5.8

Compute the mean, trimmed mean, and median for the population using R:

> state <- read.csv(file="/Users/andrewbruce1/book/state.csv")
> mean(state[["Population"]])
[1] 6162876
> mean(state[["Population"]], trim=0.1)
[1] 4783697
> median(state[["Population"]])
[1] 4436370

The mean is bigger than the trimmed mean, which is bigger than the median.

This is because the trimmed mean excludes the largest and smallest five states
(trim=0.1 drops 10% from each end). If we want to compute the average murder
rate for the country, we need to use a weighted mean or median to account for
different populations in the states. Since base R doesn’t have a function for
weighted median, we need to install a package such as matrixStats:



> weighted.mean(state[["Murder.Rate"]], w=state[["Population"]])
[1] 4.445834
> library("matrixStats")
> weightedMedian(state[["Murder.Rate"]], w=state[["Population"]])
[1] 4.4

In this case, the weighted mean and median are about the same.

KEY IDEAS

The basic metric for location is the mean, but it can be sensitive to extreme values (outlier).

Other metrics (median, trimmed mean) are more robust.



Further Reading
Michael Levine (Purdue University) has posted some useful slides on basic
calculations for measures of location.

John Tukey’s 1977 classic Exploratory Data Analysis (Pearson) is still
widely read.



Estimates of Variability
Location is just one dimension in summarizing a feature. A second dimension,
variability, also referred to as dispersion, measures whether the data values are
tightly clustered or spread out. At the heart of statistics lies variability: measuring
it, reducing it, distinguishing random from real variability, identifying the various
sources of real variability, and making decisions in the presence of it.

KEY TERMS FOR VARIAB ILITY METRICS

Deviations
The difference between the observed values and the estimate of location.

Synonyms
errors, residuals

Variance
The sum of squared deviations from the mean divided by n – 1 where n is the number of data
values.

Synonyms
mean-squared-error

Standard deviation
The square root of the variance.

Synonyms
l2-norm, Euclidean norm

Mean absolute deviation
The mean of the absolute value of the deviations from the mean.

Synonyms
l1-norm, Manhattan norm

Median absolute deviation from the median
The median of the absolute value of the deviations from the median.

Range
The difference between the largest and the smallest value in a data set.

Order statistics
Metrics based on the data values sorted from smallest to biggest.

Synonyms
ranks



Percentile
The value such that P percent of the values take on this value or less and (100–P) percent take on
this value or more.

Synonyms
quantile

Interquartile range
The difference between the 75th percentile and the 25th percentile.

Synonyms
IQR

Just as there are different ways to measure location (mean, median, etc.) there are
also different ways to measure variability.



Standard Deviation and Related Estimates
The most widely used estimates of variation are based on the differences, or
deviations, between the estimate of location and the observed data. For a set of
data {1, 4, 4}, the mean is 3 and the median is 4. The deviations from the mean
are the differences: 1 – 3 = –2, 4 – 3 = 1 , 4 – 3 = 1. These deviations tell us how
dispersed the data is around the central value.

One way to measure variability is to estimate a typical value for these deviations.
Averaging the deviations themselves would not tell us much — the negative
deviations offset the positive ones. In fact, the sum of the deviations from the mean
is precisely zero. Instead, a simple approach is to take the average of the absolute
values of the deviations from the mean. In the preceding example, the absolute
value of the deviations is {2 1 1} and their average is (2 + 1 + 1) / 3 = 1.33. This
is known as the mean absolute deviation and is computed with the formula:

where  is the sample mean.

The best-known estimates for variability are the variance and the standard
deviation, which are based on squared deviations. The variance is an average of
the squared deviations, and the standard deviation is the square root of the
variance.

The standard deviation is much easier to interpret than the variance since it is on
the same scale as the original data. Still, with its more complicated and less
intuitive formula, it might seem peculiar that the standard deviation is preferred in
statistics over the mean absolute deviation. It owes its preeminence to statistical
theory: mathematically, working with squared values is much more convenient



than absolute values, especially for statistical models.

DEGREES OF FREEDOM, AND N  OR N  –  1?

In statistics books, there is always some discussion of why we have n – 1 in the denominator in the
variance formula, instead of n, leading into the concept of degrees of freedom. This distinction is not
important since n is generally large enough that it won’t make much difference whether you divide by n
or n – 1. But in case you are interested, here is the story. It is based on the premise that you want to
make estimates about a population, based on a sample.

If you use the intuitive denominator of n in the variance formula, you will underestimate the true value of
the variance and the standard deviation in the population. This is referred to as a biased estimate.
However, if you divide by n – 1 instead of n, the standard deviation becomes an unbiased estimate.

To fully explain why using n leads to a biased estimate involves the notion of degrees of freedom, which
takes into account the number of constraints in computing an estimate. In this case, there are n – 1
degrees of freedom since there is one constraint: the standard deviation depends on calculating the
sample mean. For many problems, data scientists do not need to worry about degrees of freedom, but
there are cases where the concept is important (see “Choosing K”).

Neither the variance, the standard deviation, nor the mean absolute deviation is
robust to outliers and extreme values (see “Median and Robust Estimates” for a
discussion of robust estimates for location). The variance and standard deviation
are especially sensitive to outliers since they are based on the squared deviations.

A robust estimate of variability is the median absolute deviation from the median
or MAD:

where m is the median. Like the median, the MAD is not influenced by extreme
values. It is also possible to compute a trimmed standard deviation analogous to
the trimmed mean (see “Mean”).

NOTE
The variance, the standard deviation, mean absolute deviation, and median absolute deviation
from the median are not equivalent estimates, even in the case where the data comes from a
normal distribution. In fact, the standard deviation is always greater than the mean absolute
deviation, which itself is greater than the median absolute deviation. Sometimes, the median
absolute deviation is multiplied by a constant scaling factor (it happens to work out to 1.4826) to
put MAD on the same scale as the standard deviation in the case of a normal distribution.



Estimates Based on Percentiles
A different approach to estimating dispersion is based on looking at the spread of
the sorted data. Statistics based on sorted (ranked) data are referred to as order
statistics. The most basic measure is the range: the difference between the largest
and smallest number. The minimum and maximum values themselves are useful to
know, and helpful in identifying outliers, but the range is extremely sensitive to
outliers and not very useful as a general measure of dispersion in the data.

To avoid the sensitivity to outliers, we can look at the range of the data after
dropping values from each end. Formally, these types of estimates are based on
differences between percentiles. In a data set, the Pth percentile is a value such
that at least P percent of the values take on this value or less and at least (100 – P)
percent of the values take on this value or more. For example, to find the 80th
percentile, sort the data. Then, starting with the smallest value, proceed 80 percent
of the way to the largest value. Note that the median is the same thing as the 50th
percentile. The percentile is essentially the same as a quantile, with quantiles
indexed by fractions (so the .8 quantile is the same as the 80th percentile).

A common measurement of variability is the difference between the 25th
percentile and the 75th percentile, called the interquartile range (or IQR). Here
is a simple example: 3,1,5,3,6,7,2,9. We sort these to get 1,2,3,3,5,6,7,9. The 25th
percentile is at 2.5, and the 75th percentile is at 6.5, so the interquartile range is
6.5 – 2.5 = 4. Software can have slightly differing approaches that yield different
answers (see the following note); typically, these differences are smaller.

For very large data sets, calculating exact percentiles can be computationally very
expensive since it requires sorting all the data values. Machine learning and
statistical software use special algorithms, such as [Zhang-Wang-2007], to get an
approximate percentile that can be calculated very quickly and is guaranteed to
have a certain accuracy.



PERCENTILE: PRECISE DEFINITION
If we have an even number of data (n is even), then the percentile is ambiguous under the

preceding definition. In fact, we could take on any value between the order statistics  and 

 where j satisfies:

Formally, the percentile is the weighted average:

for some weight w between 0 and 1. Statistical software has slightly differing approaches to
choosing w. In fact, the R function quantile offers nine different alternatives to compute the
quantile. Except for small data sets, you don’t usually need to worry about the precise way a
percentile is calculated.



Example: Variability Estimates of State Population
Table 1-3 shows the first few rows in the data set containing population and
murder rates for each state.

Table 1-3. A few rows of the
data.frame state of population

and murder rate by state

State Population Murder rate

1 Alabama 4,779,736 5.7

2 Alaska 710,231 5.6

3 Arizona 6,392,017 4.7

4 Arkansas 2,915,918 5.6

5 California 37,253,956 4.4

6 Colorado 5,029,196 2.8

7 Connecticut 3,574,097 2.4

8 Delaware 897,934 5.8

Using R’s built-in functions for the standard deviation, interquartile range (IQR),
and the median absolution deviation from the median (MAD), we can compute
estimates of variability for the state population data:

> sd(state[["Population"]])
[1] 6848235
> IQR(state[["Population"]])
[1] 4847308
> mad(state[["Population"]])
[1] 3849870

The standard deviation is almost twice as large as the MAD (in R, by default, the
scale of the MAD is adjusted to be on the same scale as the mean). This is not
surprising since the standard deviation is sensitive to outliers.

KEY IDEAS



The variance and standard deviation are the most widespread and routinely reported statistics of
variability.

Both are sensitive to outliers.

More robust metrics include mean and median absolute deviations from the mean and percentiles
(quantiles).



Further Reading
1. David Lane’s online statistics resource has a section on percentiles.

2. Kevin Davenport has a useful post on deviations from the median, and
their robust properties in R-Bloggers.



Exploring the Data Distribution
Each of the estimates we’ve covered sums up the data in a single number to
describe the location or variability of the data. It is also useful to explore how the
data is distributed overall.

KEY TERMS FOR EXPLORING THE DISTRIB UTION

Boxplot
A plot introduced by Tukey as a quick way to visualize the distribution of data.

Synonyms
Box and whiskers plot

Frequency table
A tally of the count of numeric data values that fall into a set of intervals (bins).

Histogram
A plot of the frequency table with the bins on the x-axis and the count (or proportion) on the y-
axis.

Density plot
A smoothed version of the histogram, often based on a kernal density estimate.



Percentiles and Boxplots
In “Estimates Based on Percentiles”, we explored how percentiles can be used to
measure the spread of the data. Percentiles are also valuable to summarize the
entire distribution. It is common to report the quartiles (25th, 50th, and 75th
percentiles) and the deciles (the 10th, 20th, …, 90th percentiles). Percentiles are
especially valuable to summarize the tails (the outer range) of the distribution.
Popular culture has coined the term one-percenters to refer to the people in the
top 99th percentile of wealth.

Table 1-4 displays some percentiles of the murder rate by state. In R, this would
be produced by the quantile function:

quantile(state[["Murder.Rate"]], p=c(.05, .25, .5, .75, .95))
   5%   25%   50%   75%   95%
1.600 2.425 4.000 5.550 6.510

Table 1-4. Percentiles
of murder rate by

state

5% 25% 50% 75% 95%

1.60 2.42 4.00 5.55 6.51

The median is 4 murders per 100,000 people, although there is quite a bit of
variability: the 5th percentile is only 1.6 and the 95th percentile is 6.51.

Boxplots, introduced by Tukey [Tukey-1977], are based on percentiles and give a
quick way to visualize the distribution of data. Figure 1-2 shows a boxplot of the
population by state produced by R:

boxplot(state[["Population"]]/1000000, ylab="Population (millions)")





Figure 1-2. Boxplot of state populations

The top and bottom of the box are the 75th and 25th percentiles, respectively. The
median is shown by the horizontal line in the box. The dashed lines, referred to as
whiskers, extend from the top and bottom to indicate the range for the bulk of the
data. There are many variations of a boxplot; see, for example, the documentation
for the R function boxplot [R-base-2015]. By default, the R function extends the
whiskers to the furthest point beyond the box, except that it will not go beyond 1.5
times the IQR (other software may use a different rule). Any data outside of the
whiskers is plotted as single points.



Frequency Table and Histograms
A frequency table of a variable divides up the variable range into equally spaced
segments, and tells us how many values fall in each segment. Table 1-5 shows a
frequency table of the population by state computed in R:

breaks <- seq(from=min(state[["Population"]]),
                to=max(state[["Population"]]), length=11)
pop_freq <- cut(state[["Population"]], breaks=breaks,
                right=TRUE, include.lowest = TRUE)
table(pop_freq)

Table 1-5. A frequency table of population by state

BinNumber BinRange Count States

1 563,626–
4,232,658

24 WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE,WV,NM,NV,UT,KS,AR,MS,IA,CT,OK,OR

2 4,232,659–
7,901,691

14 KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,MA,WA

3 7,901,692–
11,570,724

6 VA,NJ,NC,GA,MI,OH

4 11,570,725–
15,239,757

2 PA,IL

5 15,239,758–
18,908,790

1 FL

6 18,908,791–
22,577,823

1 NY

7 22,577,824–
26,246,856

1 TX

8 26,246,857–
29,915,889

0

9 29,915,890–
33,584,922

0

10 33,584,923–
37,253,956

1 CA
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