

P R A C T I C A L
S Q L

A B e g i n n e r ’ s G u i d e t o
S t o r y t e l l i n g w i t h D a t a

by Anthony DeBarros

San Francisco

Ravit Jain
TRS

About the Author
Anthony DeBarros is an award-winning journalist who has combined avid
interests in data analysis, coding, and storytelling for much of his career. He
spent more than 25 years with the Gannett company, including the Pough-
keepsie Journal, USA TODAY, and Gannett Digital. He is currently senior vice
president for content and product development for a publishing and events
firm and lives and works in the Washington, D.C., area.

About the Technical Reviewer
Josh Berkus is a “hacker emeritus” for the PostgreSQL Project, where he
served on the Core Team for 13 years. He was also a database consultant
for 15 years, working with PostgreSQL, MySQL, CitusDB, Redis, CouchDB,
Hadoop, and Microsoft SQL Server. Josh currently works as a Kubernetes
community manager at Red Hat, Inc.

B R I E F C O N T E N T S

Foreword by Sarah Frostenson. xvii

Acknowledgments . xxi

Introduction .xxiii

Chapter 1: Creating Your First Database and Table . 1

Chapter 2: Beginning Data Exploration with SELECT . 11

Chapter 3: Understanding Data Types . 23

Chapter 4: Importing and Exporting Data . 39

Chapter 5: Basic Math and Stats with SQL . 55

Chapter 6: Joining Tables in a Relational Database . 73

Chapter 7: Table Design That Works for You . 93

Chapter 8: Extracting Information by Grouping and Summarizing 113

Chapter 9: Inspecting and Modifying Data . 129

Chapter 10: Statistical Functions in SQL . 155

Chapter 11: Working with Dates and Times . 171

Chapter 12: Advanced Query Techniques . 191

Chapter 13: Mining Text to Find Meaningful Data . 211

Chapter 14: Analyzing Spatial Data with PostGIS . 241

Chapter 15: Saving Time with Views, Functions, and Triggers 267

Chapter 16: Using PostgreSQL from the Command Line . 291

Chapter 17: Maintaining Your Database . 313

Chapter 18: Identifying and Telling the Story Behind Your Data. 325

Appendix: Additional PostgreSQL Resources . 333

Index . 337

C O N T E N T S I N D E T A I L

FOREWORD by Sarah Frostenson xvii

ACKNOWLEDGMENTS xxi

INTRODUCTION xxiii
What Is SQL? .xxiv
Why Use SQL? .xxiv
About This Book. xxv
Using the Book’s Code Examples . xxvii
Using PostgreSQL. xxviii

Installing PostgreSQL . xxviii
Working with pgAdmin .xxxi
Alternatives to pgAdmin. xxxiii

Wrapping Up . xxxiii

1
CREATING YOUR FIRST DATABASE AND TABLE 1
Creating a Database . 3

Executing SQL in pgAdmin. 3
Connecting to the Analysis Database. 5

Creating a Table . 5
The CREATE TABLE Statement . 6
Making the teachers Table . 7

Inserting Rows into a Table . 8
The INSERT Statement . 8
Viewing the Data . 9

When Code Goes Bad . 9
Formatting SQL for Readability . 10
Wrapping Up . 10
Try It Yourself. 10

2
BEGINNING DATA EXPLORATION WITH SELECT 11
Basic SELECT Syntax . 12

Querying a Subset of Columns . 13
Using DISTINCT to Find Unique Values . 14

Sorting Data with ORDER BY . 15
Filtering Rows with WHERE . 17

Using LIKE and ILIKE with WHERE . 19
Combining Operators with AND and OR. 20

Putting It All Together . 21
Wrapping Up . 21
Try It Yourself. 22

x Contents in Detail

3
UNDERSTANDING DATA TYPES 23
Characters . 24
Numbers. 26

Integers . 27
Auto-Incrementing Integers . 27
Decimal Numbers . 28
Choosing Your Number Data Type . 31

Dates and Times . 32
Using the interval Data Type in Calculations . 34
Miscellaneous Types. 35
Transforming Values from One Type to Another with CAST . 35
CAST Shortcut Notation . 36
Wrapping Up . 36
Try It Yourself. 37

4
IMPORTING AND EXPORTING DATA 39
Working with Delimited Text Files . 40

Quoting Columns that Contain Delimiters . 41
Handling Header Rows . 41

Using COPY to Import Data. 42
Importing Census Data Describing Counties . 43

Creating the us_counties_2010 Table . 44
Census Columns and Data Types . 45
Performing the Census Import with COPY. 47

Importing a Subset of Columns with COPY . 49
Adding a Default Value to a Column During Import . 50
Using COPY to Export Data. 51

Exporting All Data. 51
Exporting Particular Columns . 52
Exporting Query Results . 52

Importing and Exporting Through pgAdmin . 52
Wrapping Up . 53
Try It Yourself. 54

5
BASIC MATH AND STATS WITH SQL 55
Math Operators . 56

Math and Data Types . 56
Adding, Subtracting, and Multiplying . 57
Division and Modulo . 57
Exponents, Roots, and Factorials . 58
Minding the Order of Operations . 59

Doing Math Across Census Table Columns . 60
Adding and Subtracting Columns . 60
Finding Percentages of the Whole. 62
Tracking Percent Change . 63

Aggregate Functions for Averages and Sums. 64

Contents in Detail xi

Finding the Median . 65
Finding the Median with Percentile Functions . 66
Median and Percentiles with Census Data . 67
Finding Other Quantiles with Percentile Functions . 67
Creating a median() Function . 69

Finding the Mode. 70
Wrapping Up . 71
Try It Yourself. 71

6
JOINING TABLES IN A RELATIONAL DATABASE 73
Linking Tables Using JOIN. 74
Relating Tables with Key Columns . 74
Querying Multiple Tables Using JOIN. 77
JOIN Types . 78

JOIN . 80
LEFT JOIN and RIGHT JOIN . 80
FULL OUTER JOIN . 82
CROSS JOIN . 82

Using NULL to Find Rows with Missing Values . 83
Three Types of Table Relationships . 84

One-to-One Relationship . 84
One-to-Many Relationship . 84
Many-to-Many Relationship . 85

Selecting Specific Columns in a Join. 85
Simplifying JOIN Syntax with Table Aliases. 86
Joining Multiple Tables . 87
Performing Math on Joined Table Columns . 88
Wrapping Up . 90
Try It Yourself. 91

7
TABLE DESIGN THAT WORKS FOR YOU 93
Naming Tables, Columns, and Other Identifiers . 94

Using Quotes Around Identifiers to Enable Mixed Case 94
Pitfalls with Quoting Identifiers . 95
Guidelines for Naming Identifiers . 96

Controlling Column Values with Constraints. 96
Primary Keys: Natural vs. Surrogate . 97
Foreign Keys . 102
Automatically Deleting Related Records with CASCADE. 104
The CHECK Constraint. 104
The UNIQUE Constraint . 105
The NOT NULL Constraint . 106
Removing Constraints or Adding Them Later. 107

Speeding Up Queries with Indexes. 108
B-Tree: PostgreSQL’s Default Index . 108
Considerations When Using Indexes . 111

Wrapping Up . 111
Try It Yourself. 112

xii Contents in Detail

8
EXTRACTING INFORMATION BY
GROUPING AND SUMMARIZING 113
Creating the Library Survey Tables . 114

Creating the 2014 Library Data Table . 114
Creating the 2009 Library Data Table . 116

Exploring the Library Data Using Aggregate Functions . 117
Counting Rows and Values Using count() . 117
Finding Maximum and Minimum Values Using max() and min() 119
Aggregating Data Using GROUP BY . 120

Wrapping Up . 128
Try It Yourself. 128

9
INSPECTING AND MODIFYING DATA 129
Importing Data on Meat, Poultry, and Egg Producers . 130
Interviewing the Data Set . 131

Checking for Missing Values . 132
Checking for Inconsistent Data Values . 134
Checking for Malformed Values Using length() . 135

Modifying Tables, Columns, and Data . 136
Modifying Tables with ALTER TABLE . 137
Modifying Values with UPDATE . 138
Creating Backup Tables . 139
Restoring Missing Column Values . 140
Updating Values for Consistency. 142
Repairing ZIP Codes Using Concatenation . 143
Updating Values Across Tables. 145

Deleting Unnecessary Data . 147
Deleting Rows from a Table . 147
Deleting a Column from a Table . 148
Deleting a Table from a Database. 148

Using Transaction Blocks to Save or Revert Changes . 149
Improving Performance When Updating Large Tables. 151
Wrapping Up . 152
Try It Yourself. 152

10
STATISTICAL FUNCTIONS IN SQL 155
Creating a Census Stats Table . 156

Measuring Correlation with corr(Y, X) . 157
Checking Additional Correlations . 159
Predicting Values with Regression Analysis. 160
Finding the Effect of an Independent Variable with r-squared 163

Creating Rankings with SQL . 164
Ranking with rank() and dense_rank() . 164
Ranking Within Subgroups with PARTITION BY . 165

Calculating Rates for Meaningful Comparisons . 167

Contents in Detail xiii

Wrapping Up . 169
Try It Yourself. 169

11
WORKING WITH DATES AND TIMES 171
Data Types and Functions for Dates and Times . 172
Manipulating Dates and Times. 172

Extracting the Components of a timestamp Value . 173
Creating Datetime Values from timestamp Components 174
Retrieving the Current Date and Time. 175

Working with Time Zones . 177
Finding Your Time Zone Setting . 177
Setting the Time Zone . 178

Calculations with Dates and Times . 180
Finding Patterns in New York City Taxi Data . 180
Finding Patterns in Amtrak Data . 186

Wrapping Up . 189
Try It Yourself. 190

12
ADVANCED QUERY TECHNIQUES 191
Using Subqueries . 192

Filtering with Subqueries in a WHERE Clause . 192
Creating Derived Tables with Subqueries . 194
Joining Derived Tables. 195
Generating Columns with Subqueries . 197
Subquery Expressions . 198

Common Table Expressions. 200
Cross Tabulations. 203

Installing the crosstab() Function . 203
Tabulating Survey Results . 203
Tabulating City Temperature Readings. 205

Reclassifying Values with CASE . 207
Using CASE in a Common Table Expression . 209
Wrapping Up . 210
Try It Yourself. 210

13
MINING TEXT TO FIND MEANINGFUL DATA 211
Formatting Text Using String Functions . 212

Case Formatting . 212
Character Information . 212
Removing Characters . 213
Extracting and Replacing Characters . 213

Matching Text Patterns with Regular Expressions . 214
Regular Expression Notation. 214
Turning Text to Data with Regular Expression Functions 216
Using Regular Expressions with WHERE. 228
Additional Regular Expression Functions . 230

xiv Contents in Detail

Full Text Search in PostgreSQL. 231
Text Search Data Types . 231
Creating a Table for Full Text Search . 233
Searching Speech Text . 234
Ranking Query Matches by Relevance. 237

Wrapping Up . 239
Try It Yourself. 239

14
ANALYZING SPATIAL DATA WITH POSTGIS 241
Installing PostGIS and Creating a Spatial Database . 242
The Building Blocks of Spatial Data . 243
Two-Dimensional Geometries. 243

Well-Known Text Formats . 244
A Note on Coordinate Systems. 245
Spatial Reference System Identifier . 246

PostGIS Data Types . 247
Creating Spatial Objects with PostGIS Functions . 247

Creating a Geometry Type from Well-Known Text . 247
Creating a Geography Type from Well-Known Text 248
Point Functions . 249
LineString Functions . 249
Polygon Functions . 250

Analyzing Farmers’ Markets Data . 250
Creating and Filling a Geography Column. 251
Adding a GiST Index. 252
Finding Geographies Within a Given Distance . 253
Finding the Distance Between Geographies . 254

Working with Census Shapefiles . 256
Contents of a Shapefile . 256
Loading Shapefiles via the GUI Tool . 257
Exploring the Census 2010 Counties Shapefile. 259

Performing Spatial Joins . 262
Exploring Roads and Waterways Data . 262
Joining the Census Roads and Water Tables . 263
Finding the Location Where Objects Intersect . 264

Wrapping Up . 265
Try It Yourself. 265

15
SAVING TIME WITH VIEWS, FUNCTIONS, AND TRIGGERS 267
Using Views to Simplify Queries . 268

Creating and Querying Views . 269
Inserting, Updating, and Deleting Data Using a View 271

Programming Your Own Functions . 275
Creating the percent_change() Function . 276
Using the percent_change() Function . 277
Updating Data with a Function . 278
Using the Python Language in a Function . 281

Contents in Detail xv

Automating Database Actions with Triggers. 282
Logging Grade Updates to a Table . 282
Automatically Classifying Temperatures . 286

Wrapping Up . 289
Try It Yourself. 289

16
USING POSTGRESQL FROM THE COMMAND LINE 291
Setting Up the Command Line for psql . 292

Windows psql Setup . 292
macOS psql Setup . 296
Linux psql Setup . 299

Working with psql . 299
Launching psql and Connecting to a Database . 299
Getting Help . 300
Changing the User and Database Connection . 300
Running SQL Queries on psql . 301
Navigating and Formatting Results . 303
Meta-Commands for Database Information. 306
Importing, Exporting, and Using Files . 307

Additional Command Line Utilities to Expedite Tasks. 310
Adding a Database with createdb. 310
Loading Shapefiles with shp2pgsql . 311

Wrapping Up . 311
Try It Yourself. 312

17
MAINTAINING YOUR DATABASE 313
Recovering Unused Space with VACUUM. 314

Tracking Table Size. 314
Monitoring the autovacuum Process . 316
Running VACUUM Manually . 318
Reducing Table Size with VACUUM FULL. 318

Changing Server Settings . 318
Locating and Editing postgresql.conf . 319
Reloading Settings with pg_ctl . 321

Backing Up and Restoring Your Database. 321
Using pg_dump to Back Up a Database or Table . 321
Restoring a Database Backup with pg_restore . 322
Additional Backup and Restore Options. 323

Wrapping Up . 323
Try It Yourself. 323

18
IDENTIFYING AND TELLING THE STORY BEHIND YOUR DATA 325
Start with a Question . 326
Document Your Process. 326
Gather Your Data. 326
No Data? Build Your Own Database . 327

xvi Contents in Detail

Assess the Data’s Origins . 328
Interview the Data with Queries . 328
Consult the Data’s Owner . 328
Identify Key Indicators and Trends over Time . 329
Ask Why. 331
Communicate Your Findings . 331
Wrapping Up . 332
Try It Yourself. 332

APPENDIX
ADDITIONAL POSTGRESQL RESOURCES 333
PostgreSQL Development Environments . 333
PostgreSQL Utilities, Tools, and Extensions . 334
PostgreSQL News . 335
Documentation. 335

INDEX 337

F O R E W O R D

When people ask which programming language I
learned first, I often absent-mindedly reply, “Python,”
forgetting that it was actually with SQL that I first
learned to write code. This is probably because learn-
ing SQL felt so intuitive after spending years run-
ning formulas in Excel spreadsheets. I didn’t have a
technical background, but I found SQL’s syntax, unlike that of many other
programming languages, straightforward and easy to implement. For
example, you run SELECT * on a SQL table to make every row and column
appear. You simply use the JOIN keyword to return rows of data from differ-
ent related tables, which you can then further group, sort, and analyze.

I’m a graphics editor, and I’ve worked as a developer and journalist
at a number of publications, including POLITICO, Vox, and USA TODAY.
My daily responsibilities involve analyzing data and creating visualizations
from what I find. I first used SQL when I worked at The Chronicle of Higher
Education and its sister publication, The Chronicle of Philanthropy. Our team

Foreword xix

analyzed data ranging from nonprofit financials to faculty salaries at col-
leges and universities. Many of our projects included as much as 20 years’
worth of data, and one of my main tasks was to import all that data into a
SQL database and analyze it. I had to calculate the percent change in fund-
raising dollars at a nonprofit or find the median endowment size at a uni-
versity to measure an institution’s performance.

I discovered SQL to be a powerful language, one that fundamentally
shaped my understanding of what you can—and can’t—do with data. SQL
excels at bringing order to messy, large data sets and helps you discover how
different data sets are related. Plus, its queries and functions are easy to
reuse within the same project or even in a different database.

This leads me to Practical SQL. Looking back, I wish I’d read Chapter 4
on “Importing and Exporting Data” so I could have understood the power
of bulk imports instead of writing long, cumbersome INSERT statements
when filling a table. The statistical capabilities of PostgreSQL, covered in
Chapters 5 and 10 in this book, are also something I wish I had grasped
earlier, as my data analysis often involves calculating the percent change or
finding the average or median values. I’m embarrassed to say that I didn’t
know how percentile_cont(), covered in Chapter 5, could be used to easily
calculate a median in PostgresSQL—with the added bonus that it also finds
your data’s natural breaks or quantiles.

But at that stage in my career, I was only scratching the surface of
SQL’s capabilities. It wasn’t until 2014, when I became a data developer at
Gannett Digital on a team led by Anthony DeBarros, that I learned to use
PostgreSQL. I began to understand just how enormously powerful SQL was
for creating a reproducible and sustainable workflow.

When I met Anthony, he had been working at USA TODAY and other
Gannett properties for more than 20 years, where he had led teams that
built databases and published award-winning investigations. Anthony was
able to show me the ins and outs of our team’s databases in addition to
teaching me how to properly build and maintain my own. It was through
working with Anthony that I truly learned how to code.

One of the first projects Anthony and I collaborated on was the 2014
U.S. midterm elections. We helped build an election forecast data visual-
ization to show USA TODAY readers the latest polling averages, campaign
finance data, and biographical information for more than 1,300 candidates
in more than 500 congressional and gubernatorial races. Building our data
infrastructure was a complex, multistep process powered by a PostgreSQL
database at its heart.

Anthony taught me how to write code that funneled all the data from
our sources into a half-dozen tables in PostgreSQL. From there, we could
query the data into a format that would power the maps, charts, and front-
end presentation of our election forecast.

Around this time, I also learned one of my favorite things about
PostgreSQL—its powerful suite of geographic functions (Chapter 14 in
this book). By adding the PostGIS extension to the database, you can
create spatial data that you can then export as GeoJSON or as a shape-
file, a format that is easy to map. You can also perform complex spatial

xx Foreword

analysis, like calculating the distance between two points or finding the
density of schools or, as Anthony shows in the chapter, all the farmers’ mar-
kets in a given radius.

It’s a skill I’ve used repeatedly in my career. For example, I used it to
build a data set of lead exposure risk at the census-tract level while at Vox,
which I consider one of my crowning PostGIS achievements. Using this
database, I was able to create a data set of every U.S. Census tract and its
corresponding lead exposure risk in a spatial format that could be easily
mapped at the national level.

With so many different programming languages available—more than
200, if you can believe it—it’s truly overwhelming to know where to begin.
One of the best pieces of advice I received when first starting to code was
to find an inefficiency in my workflow that could be improved by coding. In
my case, it was building a database to easily query a project’s data. Maybe
you’re in a similar boat or maybe you just want to know how to analyze large
data sets.

Regardless, you’re probably looking for a no-nonsense guide that skips
the programming jargon and delves into SQL in an easy-to-understand
manner that is both practical and, more importantly, applicable. And that’s
exactly what Practical SQL does. It gets away from programming theory
and focuses on teaching SQL by example, using real data sets you’ll likely
encounter. It also doesn’t shy away from showing you how to deal with annoy-
ing messy data pitfalls: misspelled names, missing values, and columns with
unsuitable data types. This is important because, as you’ll quickly learn,
there’s no such thing as clean data.

Over the years, my role as a data journalist has evolved. I build fewer
databases now and build more maps. I also report more. But the core require-
ment of my job, and what I learned when first learning SQL, remains the
same: know thy data and to thine own data be true. In other words, the
most important aspect of working with data is being able to understand
what’s in it.

You can’t expect to ask the right questions of your data or tell a compel-
ling story if you don’t understand how to best analyze it. Fortunately, that’s
where Practical SQL comes in. It’ll teach you the fundamentals of working
with data so that you can discover your own stories and insights.

Sarah Frostenson
Graphics Editor at POLITICO

A C K N O W L E D G M E N T S

Practical SQL is the work of many hands. My thanks,
first, go to the team at No Starch Press. Thanks to Bill
Pollock and Tyler Ortman for capturing the vision and
sharpening the initial concept; to developmental edi-
tors Annie Choi and Liz Chadwick for refining each
chapter; to copyeditor Anne Marie Walker for polishing the final drafts
with an eagle eye; and to production editor Janelle Ludowise for laying
out the book and keeping the process well organized.

Josh Berkus, Kubernetes community manager for Red Hat, Inc., served
as our technical reviewer. To work with Josh was to receive a master class
in SQL and PostgreSQL. Thank you, Josh, for your patience and high
standards.

Thank you to Investigative Reporters and Editors (IRE) and its mem-
bers and staff past and present for training journalists to find great stories
in data. IRE is where I got my start with SQL and data journalism.

During my years at USA TODAY, many colleagues either taught me
SQL or imparted memorable lessons on data analysis. Special thanks to

Acknowledgments xxiii

Paul Overberg for sharing his vast knowledge of demographics and the
U.S. Census, to Lou Schilling for many technical lessons, to Christopher
Schnaars for his SQL expertise, and to Sarah Frostenson for graciously
agreeing to write the book’s foreword.

My deepest appreciation goes to my dear wife, Elizabeth, and our
sons. Thank you for making every day brighter and warmer, for your
love, and for bearing with me as I completed this book.

I N T R O D U C T I O N

Shortly after joining the staff of USA TODAY
I received a data set I would analyze almost

every week for the next decade. It was the
weekly Best-Selling Books list, which ranked the

nation’s top-selling books based on confidential sales
data. The list not only produced an endless stream of
story ideas to pitch, but it also captured the zeitgeist of
America in a singular way.

For example, did you know that cookbooks sell a bit more during the
week of Mother’s Day, or that Oprah Winfrey turned many obscure writ-
ers into number one best-selling authors just by having them on her show?
Week after week, the book list editor and I pored over the sales figures and
book genres, ranking the data in search of the next headline. Rarely did we
come up empty: we chronicled everything from the rocket-rise of the block-
buster Harry Potter series to the fact that Oh, the Places You’ll Go! by Dr. Seuss
has become a perennial gift for new graduates.

Introduction xxv

My technical companion during this time was the database program-
ming language SQL (for Structured Query Language). Early on, I convinced
USA TODAY’s IT department to grant me access to the SQL-based database
system that powered our book list application. Using SQL, I was able to
unlock the stories hidden in the database, which contained titles, authors,
genres, and various codes that defined the publishing world. Analyzing
data with SQL to discover interesting stories is exactly what you’ll learn to
do using this book.

What Is SQL?
SQL is a widely used programming language that allows you to define and
query databases. Whether you’re a marketing analyst, a journalist, or a
researcher mapping neurons in the brain of a fruit fly, you’ll benefit from
using SQL to manage database objects as well as create, modify, explore,
and summarize data.

Because SQL is a mature language that has been around for decades, it’s
deeply ingrained in many modern systems. A pair of IBM researchers first
outlined the syntax for SQL (then called SEQUEL) in a 1974 paper, building
on the theoretical work of the British computer scientist Edgar F. Codd. In
1979, a precursor to the database company Oracle (then called Relational
Software) became the first to use the language in a commercial product.
Today, it continues to rank as one of the most-used computer languages in
the world, and that’s unlikely to change soon.

SQL comes in several variants, which are generally tied to specific
database systems. The American National Standards Institute (ANSI) and
International Organization for Standardization (ISO), which set standards
for products and technologies, provide standards for the language and shep-
herd revisions to it. The good news is that the variants don’t stray far from the
standard, so once you learn the SQL conventions for one database, you can
transfer that knowledge to other systems.

Why Use SQL?
So why should you use SQL? After all, SQL is not usually the first tool
people choose when they’re learning to analyze data. In fact, many people
start with Microsoft Excel spreadsheets and their assortment of analytic
functions. After working with Excel, they might graduate to Access, the
database system built into Microsoft Office, which has a graphical query
interface that makes it easy to get work done, making SQL skills optional.

But as you might know, Excel and Access have their limits. Excel cur-
rently allows 1,048,576 rows maximum per worksheet, and Access limits
database size to two gigabytes and limits columns to 255 per table. It’s not
uncommon for data sets to surpass those limits, particularly when you’re
working with data dumped from government systems. The last obstacle you
want to discover while facing a deadline is that your database system doesn’t
have the capacity to get the job done.

xxvi Introduction

Using a robust SQL database system allows you to work with terabytes
of data, multiple related tables, and thousands of columns. It gives you
improved programmatic control over the structure of your data, leading
to efficiency, speed, and—most important—accuracy.

SQL is also an excellent adjunct to programming languages used in
the data sciences, such as R and Python. If you use either language, you can
connect to SQL databases and, in some cases, even incorporate SQL syntax
directly into the language. For people with no background in programming
languages, SQL often serves as an easy-to-understand introduction into
concepts related to data structures and programming logic.

Additionally, knowing SQL can help you beyond data analysis. If you
delve into building online applications, you’ll find that databases provide
the backend power for many common web frameworks, interactive maps,
and content management systems. When you need to dig beneath the sur-
face of these applications, SQL’s capability to manipulate data and data-
bases will come in very handy.

About This Book
Practical SQL is for people who encounter data in their everyday lives
and want to learn how to analyze and transform it. To this end, I discuss
real-world data and scenarios, such as U.S. Census demographics, crime
statistics, and data about taxi rides in New York City. Along with informa-
tion about databases and code, you’ll also learn tips on how to analyze and
acquire data as well as other valuable insights I’ve accumulated throughout
my career. I won’t focus on setting up servers or other tasks typically han-
dled by a database administrator, but the SQL and PostgreSQL fundamen-
tals you learn in this book will serve you well if you intend to go that route.

I’ve designed the exercises for beginner SQL coders but will assume
that you know your way around your computer, including how to install
programs, navigate your hard drive, and download files from the internet.
Although many chapters in this book can stand alone, you should work
through the book sequentially to build on the fundamentals. Some data
sets used in early chapters reappear later in the book, so following the book
in order will help you stay on track.

Practical SQL starts with the basics of databases, queries, tables, and
data that are common to SQL across many database systems. Chapters 13
to 17 cover topics more specific to PostgreSQL, such as full text search and
GIS. The following table of contents provides more detail about the topics
discussed in each chapter:

Chapter 1: Creating Your First Database and Table introduces
PostgreSQL, the pgAdmin user interface, and the code for loading
a simple data set about teachers into a new database.
Chapter 2: Beginning Data Exploration with SELECT explores basic SQL
query syntax, including how to sort and filter data.

Introduction xxvii

Chapter 3: Understanding Data Types explains the definitions for set-
ting columns in a table to hold specific types of data, from text to dates
to various forms of numbers.
Chapter 4: Importing and Exporting Data explains how to use SQL
commands to load data from external files and then export it. You’ll
load a table of U.S. Census population data that you’ll use throughout
the book.
Chapter 5: Basic Math and Stats with SQL covers arithmetic opera-
tions and introduces aggregate functions for finding sums, averages,
and medians.
Chapter 6: Joining Tables in a Relational Database explains how to
query multiple, related tables by joining them on key columns. You’ll
learn how and when to use different types of joins.
Chapter 7: Table Design that Works for You covers how to set up tables
to improve the organization and integrity of your data as well as how to
speed up queries using indexes.
Chapter 8: Extracting Information by Grouping and Summarizing
explains how to use aggregate functions to find trends in U.S. library
use based on annual surveys.
Chapter 9: Inspecting and Modifying Data explores how to find and
fix incomplete or inaccurate data using a collection of records about
meat, egg, and poultry producers as an example.
Chapter 10: Statistical Functions in SQL introduces correlation,
regression, and ranking functions in SQL to help you derive more
meaning from data sets.
Chapter 11: Working with Dates and Times explains how to create,
manipulate, and query dates and times in your database, including
working with time zones, using data on New York City taxi trips and
Amtrak train schedules.
Chapter 12: Advanced Query Techniques explains how to use more
complex SQL operations, such as subqueries and cross tabulations,
and the CASE statement to reclassify values in a data set on temperature
readings.
Chapter 13: Mining Text to Find Meaningful Data covers how to use
PostgreSQL’s full text search engine and regular expressions to extract
data from unstructured text, using a collection of speeches by U.S.
presidents as an example.
Chapter 14: Analyzing Spatial Data with PostGIS introduces data types
and queries related to spatial objects, which will let you analyze geo-
graphical features like states, roads, and rivers.
Chapter 15: Saving Time with Views, Functions, and Triggers explains
how to automate database tasks so you can avoid repeating routine work.

xxviii Introduction

Chapter 16: Using PostgreSQL from the Command Line covers how to
use text commands at your computer’s command prompt to connect to
your database and run queries.
Chapter 17: Maintaining Your Database provides tips and procedures
for tracking the size of your database, customizing settings, and back-
ing up data.
Chapter 18: Identifying and Telling the Story Behind Your Data pro-
vides guidelines for generating ideas for analysis, vetting data, drawing
sound conclusions, and presenting your findings clearly.
Appendix: Additional PostgreSQL Resources lists software and docu-
mentation to help you grow your skills.

Each chapter ends with a “Try It Yourself” section that contains exer-
cises to help you reinforce the topics you learned.

Using the Book’s Code Examples
Each chapter includes code examples, and most use data sets I’ve already
compiled. All the code and sample data in the book is available to down-
load at https://www.nostarch.com/practicalSQL/. Click the Download the code
from GitHub link to go to the GitHub repository that holds this material.
At GitHub, you should see a “Clone or Download” button that gives you the
option to download a ZIP file with all the materials. Save the file to your
computer in a location where you can easily find it, such as your desktop.

Inside the ZIP file is a folder for each chapter. Each folder contains a file
named Chapter_XX (XX is the chapter number) that ends with a .sql exten-
sion. You can open those files with a text editor or with the PostgreSQL
administrative tool you’ll install. You can copy and paste code when the
book instructs you to run it. Note that in the book, several code examples
are truncated to save space, but you’ll need the full listing from the .sql file
to complete the exercise. You’ll know an example is truncated when you see
--snip-- inside the listing.

Also in the .sql files, you’ll see lines that begin with two hyphens (--) and
a space. These are comments that provide the code’s listing number and addi-
tional context, but they’re not part of the code. These comments also note
when the file has additional examples that aren’t in the book.

N O T E After downloading data, Windows users might need to provide permission for the
database to read files. To do so, right-click the folder containing the code and data,
select Properties, and click the Security tab. Click Edit, then Add. Type the name
Everyone into the object names box and click OK. Highlight Everyone in the user
list, select all boxes under Allow, and then click Apply and OK.

Introduction xxix

Using PostgreSQL
In this book, I’ll teach you SQL using the open source PostgreSQL database
system. PostgreSQL, or simply Postgres, is a robust database system that can
handle very large amounts of data. Here are some reasons PostgreSQL is a
great choice to use with this book:

x� It’s free.
x� It’s available for Windows, macOS, and Linux operating systems.
x� Its SQL implementation closely follows ANSI standards.
x� It’s widely used for analytics and data mining, so finding help online

from peers is easy.
x� Its geospatial extension, PostGIS, lets you analyze geometric data and

perform mapping functions.
x� It’s available in several variants, such as Amazon Redshift and Green-

plum, which focus on processing huge data sets.
x� It’s a common choice for web applications, including those powered by

the popular web frameworks Django and Ruby on Rails.

Of course, you can also use another database system, such as Microsoft
SQL Server or MySQL; many code examples in this book translate easily to
either SQL implementation. However, some examples, especially later in
the book, do not, and you’ll need to search online for equivalent solutions.
Where appropriate, I’ll note whether an example code follows the ANSI
SQL standard and may be portable to other systems or whether it’s specific
to PostgreSQL.

Installing PostgreSQL
You’ll start by installing the PostgreSQL database and the graphical admin-
istrative tool pgAdmin, which is software that makes it easy to manage your
database, import and export data, and write queries.

One great benefit of working with PostgreSQL is that regardless of
whether you work on Windows, macOS, or Linux, the open source com-
munity has made it easy to get PostgreSQL up and running. The follow-
ing sections outline installation for all three operating systems as of this
writing, but options might change as new versions are released. Check the
documentation noted in each section as well as the GitHub repository with
the book’s resources; I’ll maintain the files with updates and answers to fre-
quently asked questions.

N O T E Always install the latest available version of PostgreSQL for your operating system
to ensure that it’s up to date on security patches and new features. For this book, I’ll
assume you’re using version 10.0 or later.

xxx Introduction

Windows Installation
For Windows, I recommend using the installer provided by the company
EnterpriseDB, which offers support and services for PostgreSQL users.
EnterpriseDB’s package bundles PostgreSQL with pgAdmin and the com-
pany’s own Stack Builder, which also installs the spatial database exten-
sion PostGIS and programming language support, among other tools.
To get the software, visit https://www.enterprisedb.com/ and create a free
account. Then go to the downloads page at https://www.enterprisedb.com/
software-downloads-postgres/.

Select the latest available 64-bit Windows version of EDB Postgres
Standard unless you’re using an older PC with 32-bit Windows. After you
download the installer, follow these steps:

1. Right-click the installer and select Run as administrator. Answer Yes
to the question about allowing the program to make changes to your
computer. The program will perform a setup task and then present an
initial welcome screen. Click through it.

2. Choose your installation directory, accepting the default.
3. On the Select Components screen, select the boxes to install PostgreSQL

Server, the pgAdmin tool, Stack Builder, and Command Line Tools.
4. Choose the location to store data. You can choose the default, which is

in a “data” subdirectory in the PostgreSQL directory.
5. Choose a password. PostgreSQL is robust with security and permissions.

This password is for the initial database superuser account, which is
called postgres.

6. Select a port number where the server will listen. Unless you have
another database or application using it, the default of 5432 should be
fine. If you have another version of PostgreSQL already installed or
some other application is using that default, the value might be 5433
or another number, which is also okay.

7. Select your locale. Using the default is fine. Then click through the
summary screen to begin the installation, which will take several
minutes.

8. When the installation is done, you’ll be asked whether you want to
launch EnterpriseDB’s Stack Builder to obtain additional packages.
Select the box and click Finish.

9. When Stack Builder launches, choose the PostgreSQL installation on
the drop-down menu and click Next. A list of additional applications
should download.

10. Expand the Spatial Extensions menu and select either the 32-bit
or 64-bit version of PostGIS Bundle for the version of Postgres you
installed. Also, expand the Add-ons, tools and utilities menu and
select EDB Language Pack, which installs support for programming
languages including Python. Click through several times; you’ll need
to wait while the installer downloads the additional components.

Introduction xxxi

11. When installation files have been downloaded, click Next to install
both components. For PostGIS, you’ll need to agree to the license
terms; click through until you’re asked to Choose Components. Make
sure PostGIS and Create spatial database are selected. Click Next,
accept the default database location, and click Next again.

12. Enter your database password when prompted and continue through
the prompts to finish installing PostGIS.

13. Answer Yes when asked to register GDAL. Also, answer Yes to the ques-
tions about setting POSTGIS_ENABLED_DRIVERS and enabling the
POSTGIS_ENABLE_OUTDB_RASTERS environment variable.

When finished, a PostgreSQL folder that contains shortcuts and links to
documentation should be on your Windows Start menu.

If you experience any hiccups installing PostgreSQL, refer to the
“Troubleshooting” section of the EDB guide at https://www.enterprisedb.com/
resources/product-documentation/. If you’re unable to install PostGIS via Stack
Builder, try downloading a separate installer from the PostGIS site at http://
postgis.net/windows_downloads/ and consult the guides at http://postgis.net/
documentation/.

macOS Installation
For macOS users, I recommend obtaining Postgres.app, an open source
macOS application that includes PostgreSQL as well as the PostGIS exten-
sion and a few other goodies:

1. Visit http://postgresapp.com/ and download the app’s Disk Image file that
ends in .dmg.

2. Double-click the .dmg file to open it, and then drag and drop the app
icon into your Applications folder.

3. Double-click the app icon. When Postgres.app opens, click Initialize to
create and start a PostgreSQL database.

A small elephant icon in your menu bar indicates that you now have a
database running. To use included PostgreSQL command line tools, you’ll
need to open your Terminal application and run the following code at the
prompt (you can copy the code as a single line from the Postgres.app site at
https://postgresapp.com/documentation/install.html):

sudo mkdir -p /etc/paths.d &&
echo /Applications/Postgres.app/Contents/Versions/latest/bin | sudo tee /etc/paths.d/
postgresapp

Next, because Postgres.app doesn’t include pgAdmin, you’ll need to
follow these steps to download and run pgAdmin:

1. Visit the pgAdmin site’s page for macOS downloads at https://www
.pgadmin .org/download/pgadmin-4-macos/.

xxxii Introduction

2. Select the latest version and download the installer (look for a Disk
Image file that ends in .dmg).

3. Double-click the .dmg file, click through the prompt to accept the terms,
and then drag pgAdmin’s elephant app icon into your Applications folder.

4. Double-click the app icon to launch pgAdmin.

N O T E On macOS, when you launch pgAdmin the first time, a dialog might appear that dis-
plays “pgAdmin4.app can’t be opened because it is from an unidentified developer.”
Right-click the icon and select Open. The next dialog should give you the option to
open the app; going forward, your Mac will remember you’ve granted this permission.

Installation on macOS is relatively simple, but if you encounter any
issues, review the documentation for Postgres.app at https://postgresapp.com/
documentation/ and for pgAdmin at https://www.pgadmin.org/docs/.

Linux Installation
If you’re a Linux user, installing PostgreSQL becomes simultaneously easy
and difficult, which in my experience is very much the way it is in the Linux
universe. Most popular Linux distributions—including Ubuntu, Debian, and
CentOS—bundle PostgreSQL in their standard package. However, some dis-
tributions stay on top of updates more than others. The best path is to con-
sult your distribution’s documentation for the best way to install PostgreSQL
if it’s not already included or if you want to upgrade to a more recent version.

Alternatively, the PostgreSQL project maintains complete up-to-date
package repositories for Red Hat variants, Debian, and Ubuntu. Visit https://
yum.postgresql.org/ and https://wiki.postgresql.org/wiki/Apt for details. The
packages you’ll want to install include the client and server for PostgreSQL,
pgAdmin (if available), PostGIS, and PL/Python. The exact names of these
packages will vary according to your Linux distribution. You might also need
to manually start the PostgreSQL database server.

pgAdmin is rarely part of Linux distributions. To install it, refer to the
pgAdmin site at https://www.pgadmin.org/download/ for the latest instruc-
tions and to see whether your platform is supported. If you’re feeling
adventurous, you can find instructions on building the app from source
code at https://www.pgadmin.org/download/pgadmin-4-source-code/.

Working with pgAdmin
Before you can start writing code, you’ll need to become familiar with
pgAdmin, which is the administration and management tool for PostgreSQL.
It’s free, but don’t underestimate its performance. In fact, pgAdmin is a full-
featured tool similar to tools for purchase, such as Microsoft’s SQL Server
Management Studio, in its capability to let you control multiple aspects of
server operations. It includes a graphical interface for configuring and admin-
istrating your PostgreSQL server and databases, and—most appropriately for
this book—offers a SQL query tool for writing, testing, and saving queries.

If you’re using Windows, pgAdmin should come with the PostgreSQL
package you downloaded from EnterpriseDB. On the Start menu, select

Introduction xxxiii

PostgreSQL�pgAdmin 4 (the version number of Postgres should also
appear in the menu). If you’re using macOS and have installed pgAdmin
separately, click the pgAdmin icon in your Applications folder, making sure
you’ve also launched Postgres.app.

When you open pgAdmin, it should look similar to Figure 1.

Figure 1: The macOS version of the pgAdmin opening screen

The left vertical pane displays an object browser where you can view
available servers, databases, users, and other objects. Across the top of the
screen is a collection of menu items, and below those are tabs to display
various aspects of database objects and performance.

Next, use the following steps to connect to the default database:

1. In the object browser, expand the plus sign (+) to the left of the Servers
node to show the default server. Depending on your operating system,
the default server name could be localhost or PostgreSQL x, where x is the
Postgres version number.

2. Double-click the server name. Enter the password you chose during
installation if prompted. A brief message appears while pgAdmin is
establishing a connection. When you’re connected, several new object
items should display under the server name.

3. Expand Databases and then expand the default database postgres.
4. Under postgres, expand the Schemas object, and then expand public.

Your object browser pane should look similar to Figure 2.

N O T E If pgAdmin doesn’t show a default under Servers, you’ll need to add it. Right-click
Servers, and choose the Create Server option. In the dialog, type a name for your
server in the General tab. On the Connection tab, in the Host name/address box,
type localhost. Click Save, and you should see your server listed.

xxxiv Introduction

This collection of objects
defines every feature of your data-
base server. There’s a lot here, but
for now we’ll focus on the loca-
tion of tables. To view a table’s
structure or perform actions on it
with pgAdmin, this is where you
can access the table. In Chapter 1,
you’ll use this browser to create a
new database and leave the default
postgres as is.

In addition, pgAdmin includes
a Query Tool, which is where you
write and execute code. To open the
Query Tool, in pgAdmin’s object
browser, click once on any database
to highlight it. For example, click
the postgres database and then
select Tools�Query Tool. The
Query Tool has two panes: one for
writing queries and one for output.

It’s possible to open multiple
tabs to connect to and write que-
ries for different databases or just
to organize your code the way you
would like. To open another tab,
click another database in the object
browser and open the Query Tool
again via the menu.

Alternatives to pgAdmin
Although pgAdmin is great for beginners, you’re not required to use it. If
you prefer another administrative tool that works with PostgreSQL, feel free
to use it. If you want to use your system’s command line for all the exercises
in this book, Chapter 16 provides instructions on using the PostgreSQL
command line tool psql. (The Appendix lists PostgreSQL resources you
can explore to find additional administrative tools.)

Wrapping Up
Now that you’ve installed PostgreSQL and pgAdmin, you’re ready to start
learning SQL and use it to discover valuable insights into your data!

In Chapter 1, you’ll learn how to create a database and a table, and
then you’ll load some data to explore its contents. Let’s get started!

Figure 2: The pgAdmin object browser

1
C R E A T I N G Y O U R F I R S T
D A T A B A S E A N D T A B L E

SQL is more than just a means for extract-
ing knowledge from data. It’s also a lan-

guage for defining the structures that hold
data so we can organize relationships in the data.

Chief among those structures is the table.
A table is a grid of rows and columns that store data. Each row holds a

collection of columns, and each column contains data of a specified type:
most commonly, numbers, characters, and dates. We use SQL to define the
structure of a table and how each table might relate to other tables in the
database. We also use SQL to extract, or query, data from tables.

Understanding tables is fundamental to understanding the data in your
database. Whenever I start working with a fresh database, the first thing I
do is look at the tables within. I look for clues in the table names and their
column structure. Do the tables contain text, numbers, or both? How many
rows are in each table?

Next, I look at how many tables are in the database. The simplest
database might have a single table. A full-bore application that handles

2 Chapter 1

customer data or tracks air travel might have dozens or hundreds. The
number of tables tells me not only how much data I’ll need to analyze, but
also hints that I should explore relationships among the data in each table.

Before you dig into SQL, let’s look at an example of what the contents
of tables might look like. We’ll use a hypothetical database for managing a
school’s class enrollment; within that database are several tables that track
students and their classes. The first table, called student_enrollment, shows
the students that are signed up for each class section:

student_id class_id class_section semester
---------- ---------- ------------- ---------
CHRISPA004 COMPSCI101 3 Fall 2017
DAVISHE010 COMPSCI101 3 Fall 2017
ABRILDA002 ENG101 40 Fall 2017
DAVISHE010 ENG101 40 Fall 2017
RILEYPH002 ENG101 40 Fall 2017

This table shows that two students have signed up for COMPSCI101, and
three have signed up for ENG101. But where are the details about each stu-
dent and class? In this example, these details are stored in separate tables
called students and classes, and each table relates to this one. This is where
the power of a relational database begins to show itself.

The first several rows of the students table include the following:

student_id first_name last_name dob
---------- ---------- --------- ----------
ABRILDA002 Abril Davis 1999-01-10
CHRISPA004 Chris Park 1996-04-10
DAVISHE010 Davis Hernandez 1987-09-14
RILEYPH002 Riley Phelps 1996-06-15

The students table contains details on each student, using the value in the
student_id column to identify each one. That value acts as a unique key that
connects both tables, giving you the ability to create rows such as the follow-
ing with the class_id column from student_enrollment and the first_name and
last_name columns from students:

class_id first_name last_name
---------- ---------- ---------
COMPSCI101 Davis Hernandez
COMPSCI101 Chris Park
ENG101 Abril Davis
ENG101 Davis Hernandez
ENG101 Riley Phelps

The classes table would work the same way, with a class_id column and
several columns of detail about the class. Database builders prefer to orga-
nize data using separate tables for each main entity the database manages
in order to reduce redundant data. In the example, we store each student’s
name and date of birth just once. Even if the student signs up for multiple

Creating Your First Database and Table 3

classes—as Davis Hernandez did—we don’t waste database space entering
his name next to each class in the student_enrollment table. We just include his
student ID.

Given that tables are a core building block of every database, in this
chapter you’ll start your SQL coding adventure by creating a table inside a
new database. Then you’ll load data into the table and view the completed
table.

Creating a Database
The PostgreSQL program you downloaded in the Introduction is a database
management system, a software package that allows you to define, manage,
and query databases. When you installed PostgreSQL, it created a database
server—an instance of the application running on your computer—that
includes a default database called postgres. The database is a collection
of objects that includes tables, functions, user roles, and much more.
According to the PostgreSQL documentation, the default database is
“meant for use by users, utilities and third party applications” (see https://
www.postgresql.org/docs/current/static/app-initdb.html). In the exercises in this
chapter, we’ll leave the default as is and instead create a new one. We’ll do
this to keep objects related to a particular topic or application organized
together.

To create a database, you use just one line of SQL, shown in Listing 1-1.
This code, along with all the examples in this book, is available for down-
load via the resources at https://www.nostarch.com/practicalSQL/.

CREATE DATABASE analysis;

Listing 1-1: Creating a database named analysis

This statement creates a database on your server named analysis using
default PostgreSQL settings. Note that the code consists of two keywords—
CREATE and DATABASE—followed by the name of the new database. The state-
ment ends with a semicolon, which signals the end of the command. The
semicolon ends all PostgreSQL statements and is part of the ANSI SQL
standard. Sometimes you can omit the semicolon, but not always, and par-
ticularly not when running multiple statements in the admin. So, using the
semicolon is a good habit to form.

Executing SQL in pgAdmin
As part of the Introduction to this book, you also installed the graphical
administrative tool pgAdmin (if you didn’t, go ahead and do that now). For
much of our work, you’ll use pgAdmin to run (or execute) the SQL state-
ments we write. Later in the book in Chapter 16, I’ll show you how to run
SQL statements in a terminal window using the PostgreSQL command line
program psql, but getting started is a bit easier with a graphical interface.

4 Chapter 1

We’ll use pgAdmin to run the SQL statement in Listing 1-1 that creates
the database. Then, we’ll connect to the new database and create a table.
Follow these steps:

1. Run PostgreSQL. If you’re using Windows, the installer set PostgreSQL
to launch every time you boot up. On macOS, you must double-click
Postgres.app in your Applications folder.

2. Launch pgAdmin. As you did in the Introduction, in the left verti-
cal pane (the object browser) expand the plus sign to the left of
the Servers node to show the default server. Depending on how you
installed PostgreSQL, the default server may be named localhost or
PostgreSQL x, where x is the version of the application.

3. Double-click the server name. If you supplied a password during
installation, enter it at the prompt. You’ll see a brief message that
pgAdmin is establishing a connection.

4. In pgAdmin’s object browser, expand Databases and click once on the
postgres database to highlight it, as shown in Figure 1-1.

5. Open the Query Tool by choos-
ing Tools�Query Tool.

6. In the SQL Editor pane (the top
horizontal pane), type or copy
the code from Listing 1-1.

7. Click the lightning bolt icon
to execute the statement.
PostgreSQL creates the data-
base, and in the Output pane in
the Query Tool under Messages
you’ll see a notice indicating the
query returned successfully, as
shown in Figure 1-2.

Figure 1-2: Creating the analysis database

Figure 1-1: Connecting to the default
postgres database

Creating Your First Database and Table 5

8. To see your new database, right-
click Databases in the object
browser. From the pop-up menu,
select Refresh, and the analysis
database will appear in the list,
as shown in Figure 1-3.

Good work! You now have a
database called analysis, which
you can use for the majority of the
exercises in this book. In your own
work, it’s generally a best practice to
create a new database for each proj-
ect to keep tables with related data
together.

Connecting to the Analysis Database
Before you create a table, you must ensure that pgAdmin is connected to
the analysis database rather than to the default postgres database.

To do that, follow these steps:

1. Close the Query Tool by clicking the X at the top right of the tool. You
don’t need to save the file when prompted.

2. In the object browser, click once on the analysis database.
3. Reopen the Query Tool by choosing Tools�Query Tool.
4. You should now see the label analysis on postgres@localhost at the top of

the Query Tool window. (Again, instead of localhost, your version may
show PostgreSQL.)

Now, any code you execute will apply to the analysis database.

Creating a Table
As I mentioned earlier, tables are where data lives and its relationships are
defined. When you create a table, you assign a name to each column (some-
times referred to as a field or attribute) and assign it a data type. These are the
values the column will accept—such as text, integers, decimals, and dates—
and the definition of the data type is one way SQL enforces the integrity of
data. For example, a column defined as date will take data in one of several
standard formats, such as YYYY-MM-DD. If you try to enter characters not in a
date format, for instance, the word peach, you’ll receive an error.

Data stored in a table can be accessed and analyzed, or queried, with
SQL statements. You can sort, edit, and view the data, and easily alter the
table later if your needs change.

Let’s make a table in the analysis database.

Figure 1-3: The analysis database dis-
played in the object browser

6 Chapter 1

The CREATE TABLE Statement
For this exercise, we’ll use an often-discussed piece of data: teacher salaries.
Listing 1-2 shows the SQL statement to create a table called teachers:

X CREATE TABLE teachers (
 Y id bigserial,
 Z first_name varchar(25),
 last_name varchar(50),
 school varchar(50),
 [hire_date date,
 \ salary numeric
]);

Listing 1-2: Creating a table named teachers with six columns

This table definition is far from comprehensive. For example, it’s
missing several constraints that would ensure that columns that must be
filled do indeed have data or that we’re not inadvertently entering duplicate
values. I cover constraints in detail in Chapter 7, but in these early chapters
I’m omitting them to focus on getting you started on exploring data.

The code begins with the two SQL keywords X CREATE and TABLE that,
together with the name teachers, signal PostgreSQL that the next bit of
code describes a table to add to the database. Following an opening paren-
thesis, the statement includes a comma-separated list of column names
along with their data types. For style purposes, each new line of code is on
its own line and indented four spaces, which isn’t required, but it makes the
code more readable.

Each column name represents one discrete data element defined by a
data type. The id column Y is of data type bigserial, a special integer type
that auto-increments every time you add a row to the table. The first row
receives the value of 1 in the id column, the second row 2, and so on. The
bigserial data type and other serial types are PostgreSQL-specific imple-
mentations, but most database systems have a similar feature.

Next, we create columns for the teacher’s first and last name, and the
school where they teach Z. Each is of the data type varchar, a text column
with a maximum length specified by the number in parentheses. We’re
assuming that no one in the database will have a last name of more than
50 characters. Although this is a safe assumption, you’ll discover over time
that exceptions will always surprise you.

The teacher’s hire_date [is set to the data type date, and the salary
column \ is a numeric. I’ll cover data types more thoroughly in Chapter 3,
but this table shows some common examples of data types. The code block
wraps up] with a closing parenthesis and a semicolon.

Now that you have a sense of how SQL looks, let’s run this code in
pgAdmin.

Creating Your First Database and Table 7

Making the teachers Table
You have your code and you’re connected to the database, so you can make
the table using the same steps we did when we created the database:

1. Open the pgAdmin Query Tool (if it’s not open, click once on the
analysis database in pgAdmin’s object browser, and then choose
Tools�Query Tool).

2. Copy the CREATE TABLE script from Listing 1-2 into the SQL Editor.
3. Execute the script by clicking the lightning bolt icon.

If all goes well, you’ll see a mes-
sage in the pgAdmin Query Tool’s
bottom output pane that reads, Query
returned successfully with no result
in 84 msec. Of course, the number of
milliseconds will vary depending on
your system.

Now, find the table you created.
Go back to the main pgAdmin
window and, in the object browser,
right-click the analysis database
and choose Refresh. Choose
Schemas�public�Tables to
see your new table, as shown in
Figure 1-4.

Expand the teachers table node
by clicking the plus sign to the left of
its name. This reveals more details
about the table, including the col-
umn names, as shown in Figure 1-5.
Other information appears as well,
such as indexes, triggers, and con-
straints, but I’ll cover those in later
chapters. Clicking on the table name
and then selecting the SQL menu
in the pgAdmin workspace will dis-
play the SQL statement used to make
the teachers table.

Congratulations! So far, you’ve
built a database and added a table to
it. The next step is to add data to the
table so you can write your first query.

Figure 1-4: The teachers table in the
object browser

Figure 1-5: Table
details for teachers

8 Chapter 1

Inserting Rows into a Table
You can add data to a PostgreSQL table in several ways. Often, you’ll work
with a large number of rows, so the easiest method is to import data from a
text file or another database directly into a table. But just to get started, we’ll
add a few rows using an INSERT INTO ... VALUES statement that specifies the
target columns and the data values. Then we’ll view the data in its new home.

The INSERT Statement
To insert some data into the table, you first need to erase the CREATE TABLE
statement you just ran. Then, following the same steps as you did to create
the database and table, copy the code in Listing 1-3 into your pgAdmin
Query Tool:

X INSERT INTO teachers (first_name, last_name, school, hire_date, salary)
Y VALUES ('Janet', 'Smith', 'F.D. Roosevelt HS', '2011-10-30', 36200),

 ('Lee', 'Reynolds', 'F.D. Roosevelt HS', '1993-05-22', 65000),
 ('Samuel', 'Cole', 'Myers Middle School', '2005-08-01', 43500),
 ('Samantha', 'Bush', 'Myers Middle School', '2011-10-30', 36200),
 ('Betty', 'Diaz', 'Myers Middle School', '2005-08-30', 43500),
 ('Kathleen', 'Roush', 'F.D. Roosevelt HS', '2010-10-22', 38500);Z

Listing 1-3: Inserting data into the teachers table

This code block inserts names and data for six teachers. Here, the
PostgreSQL syntax follows the ANSI SQL standard: after the INSERT INTO
keywords is the name of the table, and in parentheses are the columns to be
filled X. In the next row is the VALUES keyword and the data to insert into each
column in each row Y. You need to enclose the data for each row in a set of
parentheses, and inside each set of parentheses, use a comma to separate
each column value. The order of the values must also match the order of the
columns specified after the table name. Each row of data ends with a comma,
and the last row ends the entire statement with a semicolon Z.

Notice that certain values that we’re inserting are enclosed in single
quotes, but some are not. This is a standard SQL requirement. Text and
dates require quotes; numbers, including integers and decimals, don’t
require quotes. I’ll highlight this requirement as it comes up in examples.
Also, note the date format we’re using: a four-digit year is followed by the
month and date, and each part is joined by a hyphen. This is the interna-
tional standard for date formats; using it will help you avoid confusion.
(Why is it best to use the format YYYY-MM-DD? Check out https://xkcd.com/1179/
to see a great comic about it.) PostgreSQL supports many additional date
formats, and I’ll use several in examples.

You might be wondering about the id column, which is the first column
in the table. When you created the table, your script specified that column
to be the bigserial data type. So as PostgreSQL inserts each row, it automat-
ically fills the id column with an auto-incrementing integer. I’ll cover that in
detail in Chapter 3 when I discuss data types.

Creating Your First Database and Table 9

Now, run the code. This time the message in the Query Tool should
include the words Query returned successfully: 6 rows affected.

Viewing the Data
You can take a quick look at the data you just loaded into the teachers table
using pgAdmin. In the object browser, locate the table and right-click. In
the pop-up menu, choose View/Edit Data�All Rows. As Figure 1-6 shows,
you’ll see the six rows of data in the table with each column filled by the
values in the SQL statement.

Figure 1-6: Viewing table data directly in pgAdmin

Notice that even though you didn’t insert a value for the id column,
each teacher has an ID number assigned.

You can view data using the pgAdmin interface in a few ways, but we’ll
focus on writing SQL to handle those tasks.

When Code Goes Bad
There may be a universe where code always works, but unfortunately, we
haven’t invented a machine capable of transporting us there. Errors hap-
pen. Whether you make a typo or mix up the order of operations, com-
puter languages are unforgiving about syntax. For example, if you forget
a comma in the code in Listing 1-3, PostgreSQL squawks back an error:

ERROR: syntax error at or near "("
LINE 5: ('Samuel', 'Cole', 'Myers Middle School', '2005-08-01', 43...
 ^
********** Error **********

Fortunately, the error message hints at what’s wrong and where: a syn-
tax error is near an open parenthesis on line 5. But sometimes error mes-
sages can be more obscure. In that case, you do what the best coders do: a
quick internet search for the error message. Most likely, someone else has
experienced the same issue and might know the answer.

10 Chapter 1

Formatting SQL for Readability
SQL requires no special formatting to run, so you’re free to use your own
psychedelic style of uppercase, lowercase, and random indentations. But
that won’t win you any friends when others need to work with your code
(and sooner or later someone will). For the sake of readability and being a
good coder, it’s best to follow these conventions:

x� Uppercase SQL keywords, such as SELECT. Some SQL coders also upper-
case the names of data types, such as TEXT and INTEGER. I use lowercase
characters for data types in this book to separate them in your mind
from keywords, but you can uppercase them if desired.

x� Avoid camel case and instead use lowercase_and_underscores for object
names, such as tables and column names (see more details about case
in Chapter 7).

x� Indent clauses and code blocks for readability using either two or four
spaces. Some coders prefer tabs to spaces; use whichever works best for
you or your organization.

We’ll explore other SQL coding conventions as we go through the
book, but these are the basics.

Wrapping Up
You accomplished quite a bit in this first chapter: you created a database
and a table, and then loaded data into it. You’re on your way to adding
SQL to your data analysis toolkit! In the next chapter, you’ll use this set
of teacher data to learn the basics of querying a table using SELECT.

T RY I T YOURSE L F

Here are two exercises to help you explore concepts related to databases,
tables, and data relationships:

1. Imagine you’re building a database to catalog all the animals at your local
zoo. You want one table to track the kinds of animals in the collection and
another table to track the specifics on each animal. Write CREATE TABLE
statements for each table that include some of the columns you need. Why
did you include the columns you chose?

2. Now create INSERT statements to load sample data into the tables. How
can you view the data via the pgAdmin tool? Create an additional INSERT
statement for one of your tables. Purposely omit one of the required commas
separating the entries in the VALUES clause of the query. What is the error
message? Would it help you find the error in the code?

2
B E G I N N I N G D A T A

E X P L O R A T I O N W I T H S E L E C T

For me, the best part of digging into data
isn’t the prerequisites of gathering, loading,

or cleaning the data, but when I actually get
to interview the data. Those are the moments

when I discover whether the data is clean or dirty,
whether it’s complete, and most of all, what story the
data can tell. Think of interviewing data as a process akin to interviewing a
person applying for a job. You want to ask questions that reveal whether the
reality of their expertise matches their resume.

Interviewing is exciting because you discover truths. For example, you
might find that half the respondents forgot to fill out the email field in the
questionnaire, or the mayor hasn’t paid property taxes for the past five years.
Or you might learn that your data is dirty: names are spelled inconsistently,
dates are incorrect, or numbers don’t jibe with your expectations. Your find-
ings become part of the data’s story.

In SQL, interviewing data starts with the SELECT keyword, which
retrieves rows and columns from one or more of the tables in a database.

12 Chapter 2

A SELECT statement can be simple, retrieving everything in a single table, or
it can be complex enough to link dozens of tables while handling multiple
calculations and filtering by exact criteria.

We’ll start with simple SELECT statements.

Basic SELECT Syntax
Here’s a SELECT statement that fetches every row and column in a table called
my_table:

SELECT * FROM my_table;

This single line of code shows the most basic form of a SQL query. The
asterisk following the SELECT keyword is a wildcard. A wildcard is like a stand-in
for a value: it doesn’t represent anything in particular and instead represents
everything that value could possibly be. Here, it’s shorthand for “select all
columns.” If you had given a column name instead of the wildcard, this com-
mand would select the values in that column. The FROM keyword indicates you
want the query to return data from a particular table. The semicolon after
the table name tells PostgreSQL it’s the end of the query statement.

Let’s use this SELECT statement with the asterisk wildcard on the
teachers table you created in Chapter 1. Once again, open pgAdmin,
select the analysis database, and open the Query Tool. Then execute
the statement shown in Listing 2-1:

SELECT * FROM teachers;

Listing 2-1: Querying all rows and columns from the teachers table

The result set in the Query Tool’s output pane contains all the rows and
columns you inserted into the teachers table in Chapter 1. The rows may not
always appear in this order, but that’s okay.

id first_name last_name school hire_date salary
-- ---------- --------- ------------------- ---------- ------
1 Janet Smith F.D. Roosevelt HS 2011-10-30 36200
2 Lee Reynolds F.D. Roosevelt HS 1993-05-22 65000
3 Samuel Cole Myers Middle School 2005-08-01 43500
4 Samantha Bush Myers Middle School 2011-10-30 36200
5 Betty Diaz Myers Middle School 2005-08-30 43500
6 Kathleen Roush F.D. Roosevelt HS 2010-10-22 38500

Note that the id column (of type bigserial) automatically fills with
sequential integers, even though you didn’t explicitly insert them. Very
handy. This auto-incrementing integer acts as a unique identifier, or key,
that not only ensures each row in the table is unique, but also will later give
us a way to connect this table to other tables in the database.

Let’s move on to refining this query.

Beginning Data Exploration with SELECT 13

Querying a Subset of Columns
Using the asterisk wildcard is helpful for discovering the entire con-
tents of a table. But often it’s more practical to limit the columns the
query retrieves, especially with large databases. You can do this by nam-
ing columns, separated by commas, right after the SELECT keyword. For
example:

SELECT some_column, another_column, amazing_column FROM table_name;

With that syntax, the query will retrieve all rows from just those three
columns.

Let’s apply this to the teachers table. Perhaps in your analysis you want
to focus on teachers’ names and salaries, not the school where they work
or when they were hired. In that case, you might select only a few columns
from the table instead of using the asterisk wildcard. Enter the statement
shown in Listing 2-2. Notice that the order of the columns in the query is
different than the order in the table: you’re able to retrieve columns in any
order you’d like.

SELECT last_name, first_name, salary FROM teachers;

Listing 2-2: Querying a subset of columns

Now, in the result set, you’ve limited the columns to three:

last_name first_name salary
--------- ---------- ------
Smith Janet 36200
Reynolds Lee 65000
Cole Samuel 43500
Bush Samantha 36200
Diaz Betty 43500
Roush Kathleen 38500

Although these examples are basic, they illustrate a good strategy for
beginning your interview of a data set. Generally, it’s wise to start your analy-
sis by checking whether your data is present and in the format you expect.
Are dates in a complete month-date-year format, or are they entered (as I
once ruefully observed) as text with the month and year only? Does every
row have a value? Are there mysteriously no last names starting with letters
beyond “M”? All these issues indicate potential hazards ranging from missing
data to shoddy recordkeeping somewhere in the workflow.

We’re only working with a table of six rows, but when you’re facing a
table of thousands or even millions of rows, it’s essential to get a quick read
on your data quality and the range of values it contains. To do this, let’s dig
deeper and add several SQL keywords.

14 Chapter 2

Using DISTINCT to Find Unique Values
In a table, it’s not unusual for a column to contain rows with duplicate
values. In the teachers table, for example, the school column lists the same
school names multiple times because each school employs many teachers.

To understand the range of values in a column, we can use the
DISTINCT keyword as part of a query that eliminates duplicates and shows
only unique values. Use the DISTINCT keyword immediately after SELECT, as
shown in Listing 2-3:

SELECT DISTINCT school
FROM teachers;

Listing 2-3: Querying distinct values in the school column

The result is as follows:

school

F.D. Roosevelt HS
Myers Middle School

Even though six rows are in the table, the output shows just the two
unique school names in the school column. This is a helpful first step
toward assessing data quality. For example, if a school name is spelled
more than one way, those spelling variations will be easy to spot and
correct. When you’re working with dates or numbers, DISTINCT will help
highlight inconsistent or broken formatting. For example, you might
inherit a data set in which dates were entered in a column formatted with
a text data type. That practice (which you should avoid) allows malformed
dates to exist:

date

5/30/2019
6//2019
6/1/2019
6/2/2019

The DISTINCT keyword also works on more than one column at a time.
If we add a column, the query returns each unique pair of values. Run the
code in Listing 2-4:

SELECT DISTINCT school, salary
FROM teachers;

Listing 2-4: Querying distinct pairs of values in the school and salary columns

Beginning Data Exploration with SELECT 15

Now the query returns each unique (or distinct) salary earned at each
school. Because two teachers at Myers Middle School earn $43,500, that
pair is listed in just one row, and the query returns five rows rather than all
six in the table:

school salary
------------------- ------
Myers Middle School 43500
Myers Middle School 36200
F.D. Roosevelt HS 65000
F.D. Roosevelt HS 38500
F.D. Roosevelt HS 36200

This technique gives us the ability to ask, “For each x in the table, what
are all the y values?” For each factory, what are all the chemicals it produces?
For each election district, who are all the candidates running for office? For
each concert hall, who are the artists playing this month?

SQL offers more sophisticated techniques with aggregate functions that
let us count, sum, and find minimum and maximum values. I’ll cover those
in detail in Chapter 5 and Chapter 8.

Sorting Data with ORDER BY
Data can make more sense, and may reveal patterns more readily, when it’s
arranged in order rather than jumbled randomly.

In SQL, we order the results of a query using a clause containing the
keywords ORDER BY followed by the name of the column or columns to sort.
Applying this clause doesn’t change the original table, only the result of the
query. Listing 2-5 shows an example using the teachers table:

SELECT first_name, last_name, salary
FROM teachers
ORDER BY salary DESC;

Listing 2-5: Sorting a column with ORDER BY

By default, ORDER BY sorts values in ascending order, but here I sort in
descending order by adding the DESC keyword. (The optional ASC keyword
specifies sorting in ascending order.) Now, by ordering the salary column
from highest to lowest, I can determine which teachers earn the most:

first_name last_name salary
---------- --------- ------
Lee Reynolds 65000
Samuel Cole 43500
Betty Diaz 43500
Kathleen Roush 38500
Janet Smith 36200
Samantha Bush 36200

16 Chapter 2

The ability to sort in our queries gives us great flexibility in how we
view and present data. For example, we’re not limited to sorting on just
one column. Enter the statement in Listing 2-6:

SELECT last_name, school, hire_date
FROM teachers

X ORDER BY school ASC, hire_date DESC;

Listing 2-6: Sorting multiple columns with ORDER BY

In this case, we’re retrieving the last names of teachers, their school, and
the date they were hired. By sorting the school column in ascending order

SOR T ING T E X T M AY SUR PR ISE YOU

Sorting a column of numbers in PostgreSQL yields what you might expect: the
data ranked from largest value to smallest or vice versa depending on whether
or not you use the DESC keyword. But sorting a column with letters or other char-
acters may return surprising results, especially if it has a mix of uppercase and
lowercase characters, punctuation, or numbers that are treated as text.

During PostgreSQL installation, the server is assigned a particular locale
for collation, or ordering of text, as well as a character set. Both are based
either on settings in the computer’s operating system or custom options sup-
plied during installation. (You can read more about collation in the official
PostgreSQL documentation at https://www.postgresql.org/docs/current/static/
collation.html.) For example, on my Mac, my PostgreSQL install is set to the
locale en_US, or U.S. English, and the character set UTF-8. You can view your
server’s collation setting by executing the statement SHOW ALL; and viewing the
value of the parameter lc_collate.

In a character set, each character gets a numerical value, and the sorting
order depends on the order of those values. Based on UTF-8, PostgreSQL sorts
characters in this order:

1. Punctuation marks, including quotes, parentheses, and math operators

2. Numbers 0 to 9

3. Additional punctuation, including the question mark

4. Capital letters from A to Z

5. More punctuation, including brackets and underscore

6. Lowercase letters a to z

7. Additional punctuation, special characters, and the extended alphabet

Normally, the sorting order won’t be an issue because character columns
usually just contain names, places, descriptions, and other straightforward text.
But if you’re wondering why the word Ladybug appears before ladybug in your
sort, you now have an explanation.

Beginning Data Exploration with SELECT 17

and hire_date in descending order X, we create a listing of teachers grouped
by school with the most recently hired teachers listed first. This shows us who
the newest teachers are at each school. The result set should look like this:

last_name school hire_date
--------- ------------------- ----------
Smith F.D. Roosevelt HS 2011-10-30
Roush F.D. Roosevelt HS 2010-10-22
Reynolds F.D. Roosevelt HS 1993-05-22
Bush Myers Middle School 2011-10-30
Diaz Myers Middle School 2005-08-30
Cole Myers Middle School 2005-08-01

You can use ORDER BY on more than two columns, but you’ll soon reach
a point of diminishing returns where the effect will be hardly noticeable.
Imagine if you added columns about teachers’ highest college degree
attained, the grade level taught, and birthdate to the ORDER BY clause. It would
be difficult to understand the various sort directions in the output all at once,
much less communicate that to others. Digesting data happens most easily
when the result focuses on answering a specific question; therefore, a better
strategy is to limit the number of columns in your query to only the most
important, and then run several queries to answer each question you have.

Filtering Rows with WHERE
Sometimes, you’ll want to limit the rows a query returns to only those in
which one or more columns meet certain criteria. Using teachers as an
example, you might want to find all teachers hired before a particular year
or all teachers making more than $75,000 at elementary schools. For these
tasks, we use the WHERE clause.

The WHERE keyword allows you to find rows that match a specific value, a
range of values, or multiple values based on criteria supplied via an operator.
You also can exclude rows based on criteria.

Listing 2-7 shows a basic example. Note that in standard SQL syntax,
the WHERE clause follows the FROM keyword and the name of the table or tables
being queried:

SELECT last_name, school, hire_date
FROM teachers
WHERE school = 'Myers Middle School';

Listing 2-7: Filtering rows using WHERE

The result set shows just the teachers assigned to Myers Middle School:

last_name school hire_date
--------- ------------------- ----------
Cole Myers Middle School 2005-08-01
Bush Myers Middle School 2011-10-30
Diaz Myers Middle School 2005-08-30

18 Chapter 2

Here, I’m using the equals comparison operator to find rows that exactly
match a value, but of course you can use other operators with WHERE to cus-
tomize your filter criteria. Table 2-1 provides a summary of the most com-
monly used comparison operators. Depending on your database system,
many more might be available.

Table 2-1: Comparison and Matching Operators in PostgreSQL

Operator Function Example
= Equal to WHERE school = 'Baker Middle'

<> or != Not equal to* WHERE school <> 'Baker Middle'

> Greater than WHERE salary > 20000

< Less than WHERE salary < 60500

>= Greater than or equal to WHERE salary >= 20000

<= Less than or equal to WHERE salary <= 60500

BETWEEN Within a range WHERE salary BETWEEN 20000 AND 40000

IN Match one of a set of values WHERE last_name IN ('Bush', 'Roush')

LIKE Match a pattern (case sensitive) WHERE first_name LIKE 'Sam%'

ILIKE Match a pattern (case insensitive) WHERE first_name ILIKE 'sam%'

NOT Negates a condition WHERE first_name NOT ILIKE 'sam%'
* The != operator is not part of standard ANSI SQL but is available in PostgreSQL and several other database systems.

The following examples show comparison operators in action. First, we
use the equals operator to find teachers whose first name is Janet:

SELECT first_name, last_name, school
FROM teachers
WHERE first_name = 'Janet';

Next, we list all school names in the table but exclude F.D. Roosevelt HS
using the not equal operator:

SELECT school
FROM teachers
WHERE school != 'F.D. Roosevelt HS';

Here we use the less than operator to list teachers hired before
January 1, 2000 (using the date format YYYY-MM-DD):

SELECT first_name, last_name, hire_date
FROM teachers
WHERE hire_date < '2000-01-01';

Beginning Data Exploration with SELECT 19

Then we find teachers who earn $43,500 or more using the >= operator:

SELECT first_name, last_name, salary
FROM teachers
WHERE salary >= 43500;

The next query uses the BETWEEN operator to find teachers who earn
between $40,000 and $65,000. Note that BETWEEN is inclusive, meaning the
result will include values matching the start and end ranges specified.

SELECT first_name, last_name, school, salary
FROM teachers
WHERE salary BETWEEN 40000 AND 65000;

We’ll return to these operators throughout the book, because they’ll
play a key role in helping us ferret out the data and answers we want to find.

Using LIKE and ILIKE with WHERE
Comparison operators are fairly straightforward, but LIKE and ILIKE deserve
additional explanation. First, both let you search for patterns in strings by
using two special characters:

Percent sign (%) A wildcard matching one or more characters
Underscore (_) A wildcard matching just one character

For example, if you’re trying to find the word baker, the following LIKE
patterns will match it:

LIKE 'b%'
LIKE '%ak%'
LIKE '_aker'
LIKE 'ba_er'

The difference? The LIKE operator, which is part of the ANSI SQL
standard, is case sensitive. The ILIKE operator, which is a PostgreSQL-only
implementation, is case insensitive. Listing 2-8 shows how the two key-
words give you different results. The first WHERE clause uses LIKE X to find
names that start with the characters sam, and because it’s case sensitive, it
will return zero results. The second, using the case-insensitive ILIKE Y, will
return Samuel and Samantha from the table:

SELECT first_name
FROM teachers

X WHERE first_name LIKE 'sam%';

SELECT first_name
FROM teachers

Y WHERE first_name ILIKE 'sam%';

Listing 2-8: Filtering with LIKE and ILIKE

20 Chapter 2

Over the years, I’ve gravitated toward using ILIKE and wildcard opera-
tors in searches to make sure I’m not inadvertently excluding results from
searches. I don’t assume that whoever typed the names of people, places,
products, or other proper nouns always remembered to capitalize them.
And if one of the goals of interviewing data is to understand its quality,
using a case-insensitive search will help you find variations.

Because LIKE and ILIKE search for patterns, performance on large data-
bases can be slow. We can improve performance using indexes, which I’ll
cover in “Speeding Up Queries with Indexes” on page 108.

Combining Operators with AND and OR
Comparison operators become even more useful when we combine them.
To do this, we connect them using keywords AND and OR along with, if needed,
parentheses.

The statements in Listing 2-9 show three examples that combine opera-
tors this way:

SELECT *
FROM teachers

X WHERE school = 'Myers Middle School'
 AND salary < 40000;

SELECT *
FROM teachers

Y WHERE last_name = 'Cole'
 OR last_name = 'Bush';

SELECT *
FROM teachers

Z WHERE school = 'F.D. Roosevelt HS'
 AND (salary < 38000 OR salary > 40000);

Listing 2-9: Combining operators using AND and OR

The first query uses AND in the WHERE clause X to find teachers who work
at Myers Middle School and have a salary less than $40,000. Because we
connect the two conditions using AND, both must be true for a row to meet
the criteria in the WHERE clause and be returned in the query results.

The second example uses OR Y to search for any teacher whose last name
matches Cole or Bush. When we connect conditions using OR, only one of the
conditions must be true for a row to meet the criteria of the WHERE clause.

The final example looks for teachers at Roosevelt whose salaries are
either less than $38,000 or greater than $40,000 Z. When we place state-
ments inside parentheses, those are evaluated as a group before being com-
bined with other criteria. In this case, the school name must be exactly F.D.
Roosevelt HS and the salary must be either less or higher than specified for a
row to meet the criteria of the WHERE clause.

Beginning Data Exploration with SELECT 21

Putting It All Together
You can begin to see how even the previous simple queries allow us to delve
into our data with flexibility and precision to find what we’re looking for.
You can combine comparison operator statements using the AND and OR
keywords to provide multiple criteria for filtering, and you can include an
ORDER BY clause to rank the results.

With the preceding information in mind, let’s combine the concepts in
this chapter into one statement to show how they fit together. SQL is par-
ticular about the order of keywords, so follow this convention:

SELECT column_names
FROM table_name
WHERE criteria
ORDER BY column_names;

Listing 2-10 shows a query against the teachers table that includes all the
aforementioned pieces:

SELECT first_name, last_name, school, hire_date, salary
FROM teachers
WHERE school LIKE '%Roos%'
ORDER BY hire_date DESC;

Listing 2-10: A SELECT statement including WHERE and ORDER BY

This listing returns teachers at Roosevelt High School, ordered from
newest hire to earliest. We can see a clear correlation between a teacher’s
hire date at the school and his or her current salary level:

first_name last_name school hire_date salary
---------- --------- ----------------- ---------- ------
Janet Smith F.D. Roosevelt HS 2011-10-30 36200
Kathleen Roush F.D. Roosevelt HS 2010-10-22 38500
Lee Reynolds F.D. Roosevelt HS 1993-05-22 65000

Wrapping Up
Now that you’ve learned the basic structure of a few different SQL queries,
you’ve acquired the foundation for many of the additional skills I’ll cover in
later chapters. Sorting, filtering, and choosing only the most important col-
umns from a table can yield a surprising amount of information from your
data and help you find the story it tells.

In the next chapter, you’ll learn about another foundational aspect of
SQL: data types.

22 Chapter 2

T RY I T YOURSE L F

Explore basic queries with these exercises:

1. The school district superintendent asks for a list of teachers in each school.
Write a query that lists the schools in alphabetical order along with teach-
ers ordered by last name A–Z.

2. Write a query that finds the one teacher whose first name starts with the
letter S and who earns more than $40,000.

3. Rank teachers hired since January 1, 2010, ordered by highest paid to
lowest.

	Brief Contents

	Contents in Detail

	Foreword
	Acknowledgments
	Introduction
	What Is SQL?
	Why Use SQL?
	About This Book
	Using the Book’s Code Examples
	Using PostgreSQL
	Installing PostgreSQL
	Working with pgAdmin
	Alternatives to pgAdmin

	Wrapping Up

	Chapter 1: Creating Your First Database and Table

	Creating a Database
	Executing SQL in pgAdmin
	Connecting to the Analysis Database

	Creating a Table
	The CREATE TABLE Statement
	Making the teachers Table

	Inserting Rows into a Table
	The INSERT Statement
	Viewing the Data

	When Code Goes Bad
	Formatting SQL for Readability
	Wrapping Up
	Try It Yourself

	Chapter 2: Beginning Data
Exploration with SELECT

	Basic SELECT Syntax
	Querying a Subset of Columns
	Using DISTINCT to Find Unique Values

	Sorting Data with ORDER BY
	Filtering Rows with WHERE
	Using LIKE and ILIKE with WHERE
	Combining Operators with AND and OR

	Putting It All Together
	Wrapping Up
	Try It Yourself

	Chapter 3: Understanding Data Types

	Characters
	Numbers
	Integers
	Auto-Incrementing Integers
	Decimal Numbers
	Choosing Your Number Data Type

	Dates and Times
	Using the interval Data Type in Calculations
	Miscellaneous Types
	Transforming Values from One Type to Another with CAST
	CAST Shortcut Notation
	Wrapping Up
	Try It Yourself

	Chapter 4: Importing and Exporting Data

	Working with Delimited Text Files
	Quoting Columns that Contain Delimiters
	Handling Header Rows

	Using COPY to Import Data
	Importing Census Data Describing Counties
	Creating the us_counties_2010 Table
	Census Columns and Data Types
	Performing the Census Import with COPY

	Importing a Subset of Columns with COPY
	Adding a Default Value to a Column During Import
	Using COPY to Export Data
	Exporting All Data
	Exporting Particular Columns
	Exporting Query Results

	Importing and Exporting Through pgAdmin
	Wrapping Up
	Try It Yourself

	Chapter 5: Basic Math and Stats with SQL

	Math Operators
	Math and Data Types
	Adding, Subtracting, and Multiplying
	Division and Modulo
	Exponents, Roots, and Factorials
	Minding the Order of Operations

	Doing Math Across Census Table Columns
	Adding and Subtracting Columns
	Finding Percentages of the Whole
	Tracking Percent Change

	Aggregate Functions for Averages and Sums
	Finding the Median
	Finding the Median with Percentile Functions
	Median and Percentiles with Census Data
	Finding Other Quantiles with Percentile Functions
	Creating a median() Function

	Finding the Mode
	Wrapping Up
	Try It Yourself

	Chapter 6: Joining Tables in a Relational Database

	Linking Tables Using JOIN
	Relating Tables with Key Columns
	Querying Multiple Tables Using JOIN
	JOIN Types
	JOIN
	LEFT JOIN and RIGHT JOIN
	FULL OUTER JOIN
	CROSS JOIN

	Using NULL to Find Rows with Missing Values
	Three Types of Table Relationships
	One-to-One Relationship
	One-to-Many Relationship
	Many-to-Many Relationship

	Selecting Specific Columns in a Join
	Simplifying JOIN Syntax with Table Aliases
	Joining Multiple Tables
	Performing Math on Joined Table Columns
	Wrapping Up
	Try It Yourself

	Chapter 7: Table Design That Works for You

	Naming Tables, Columns, and Other Identifiers
	Using Quotes Around Identifiers to Enable Mixed Case
	Pitfalls with Quoting Identifiers
	Guidelines for Naming Identifiers

	Controlling Column Values with Constraints
	Primary Keys: Natural vs. Surrogate
	Foreign Keys
	Automatically Deleting Related Records with CASCADE
	The CHECK Constraint
	The UNIQUE Constraint
	The NOT NULL Constraint
	Removing Constraints or Adding Them Later

	Speeding Up Queries with Indexes
	B-Tree: PostgreSQL’s Default Index
	Considerations When Using Indexes

	Wrapping Up
	Try It Yourself

	Chapter 8: Extracting Information by Grouping and Summarizing

	Creating the Library Survey Tables
	Creating the 2014 Library Data Table
	Creating the 2009 Library Data Table

	Exploring the Library Data Using Aggregate Functions
	Counting Rows and Values Using count()
	Finding Maximum and Minimum Values Using max() and min()
	Aggregating Data Using GROUP BY

	Wrapping Up

	Try It Yourself

	Chapter 9: Inspecting and
Modifying Data

	Importing Data on Meat, Poultry, and Egg Producers
	Interviewing the Data Set
	Checking for Missing Values
	Checking for Inconsistent Data Values
	Checking for Malformed Values Using length()

	Modifying Tables, Columns, and Data
	Modifying Tables with ALTER TABLE
	Modifying Values with UPDATE
	Creating Backup Tables
	Restoring Missing Column Values
	Updating Values for Consistency
	Repairing ZIP Codes Using Concatenation
	Updating Values Across Tables

	Deleting Unnecessary Data
	Deleting Rows from a Table
	Deleting a Column from a Table
	Deleting a Table from a Database

	Using Transaction Blocks to Save or Revert Changes
	Improving Performance When Updating Large Tables
	Wrapping Up
	Try It Yourself

	Chapter 10: Statistical Functions in SQL

	Creating a Census Stats Table
	Measuring Correlation with corr(Y, X)
	Checking Additional Correlations
	Predicting Values with Regression Analysis
	Finding the Effect of an Independent Variable with r-squared

	Creating Rankings with SQL
	Ranking with rank() and dense_rank()
	Ranking Within Subgroups with PARTITION BY

	Calculating Rates for Meaningful Comparisons
	Wrapping Up
	Try It Yourself

	Chapter 11: Working with Dates and Times

	Data Types and Functions for Dates and Times
	Manipulating Dates and Times
	Extracting the Components of a timestamp Value
	Creating Datetime Values from timestamp Components
	Retrieving the Current Date and Time

	Working with Time Zones
	Finding Your Time Zone Setting
	Setting the Time Zone

	Calculations with Dates and Times
	Finding Patterns in New York City Taxi Data
	Finding Patterns in Amtrak Data

	Wrapping Up
	Try It Yourself

	Chapter 12: Advanced Query Techniques

	Using Subqueries
	Filtering with Subqueries in a WHERE Clause
	Creating Derived Tables with Subqueries
	Joining Derived Tables
	Generating Columns with Subqueries
	Subquery Expressions

	Common Table Expressions
	Cross Tabulations
	Installing the crosstab() Function
	Tabulating Survey Results
	Tabulating City Temperature Readings

	Reclassifying Values with CASE
	Using CASE in a Common Table Expression
	Wrapping Up

	Try It Yourself

	Chapter 13: Mining Text to Find Meaningful Data

	Formatting Text Using String Functions
	Case Formatting
	Character Information
	Removing Characters
	Extracting and Replacing Characters

	Matching Text Patterns with Regular Expressions
	Regular Expression Notation
	Turning Text to Data with Regular Expression Functions
	Using Regular Expressions with WHERE
	Additional Regular Expression Functions

	Full Text Search in PostgreSQL
	Text Search Data Types
	Creating a Table for Full Text Search
	Searching Speech Text
	Ranking Query Matches by Relevance

	Wrapping Up
	Try It Yourself

	Chapter 14: Analyzing Spatial Data with PostGIS

	Installing PostGIS and Creating a Spatial Database
	The Building Blocks of Spatial Data
	Two-Dimensional Geometries
	Well-Known Text Formats
	A Note on Coordinate Systems
	Spatial Reference System Identifier

	PostGIS Data Types
	Creating Spatial Objects with PostGIS Functions
	Creating a Geometry Type from Well-Known Text
	Creating a Geography Type from Well-Known Text
	Point Functions
	LineString Functions
	Polygon Functions

	Analyzing Farmers’ Markets Data
	Creating and Filling a Geography Column
	Adding a GiST Index
	Finding Geographies Within a Given Distance
	Finding the Distance Between Geographies

	Working with Census Shapefiles
	Contents of a Shapefile
	Loading Shapefiles via the GUI Tool
	Exploring the Census 2010 Counties Shapefile

	Performing Spatial Joins
	Exploring Roads and Waterways Data
	Joining the Census Roads and Water Tables
	Finding the Location Where Objects Intersect

	Wrapping Up
	Try It Yourself

	Chapter 15: Saving Time with Views, Functions, and Triggers

	Using Views to Simplify Queries
	Creating and Querying Views
	Inserting, Updating, and Deleting Data Using a View

	Programming Your Own Functions
	Creating the percent_change() Function
	Using the percent_change() Function
	Updating Data with a Function
	Using the Python Language in a Function

	Automating Database Actions with Triggers
	Logging Grade Updates to a Table
	Automatically Classifying Temperatures

	Wrapping Up
	Try It Yourself

	Chapter 16: Using PostgreSQL from the Command Line

	Setting Up the Command Line for psql
	Windows psql Setup
	macOS psql Setup
	Linux psql Setup

	Working with psql
	Launching psql and Connecting to a Database
	Getting Help
	Changing the User and Database Connection
	Running SQL Queries on psql
	Navigating and Formatting Results
	Meta-Commands for Database Information
	Importing, Exporting, and Using Files

	Additional Command Line Utilities to Expedite Tasks
	Adding a Database with createdb
	Loading Shapefiles with shp2pgsql

	Wrapping Up
	Try It Yourself

	Chapter 17: Maintaining Your Database

	Recovering Unused Space with VACUUM
	Tracking Table Size
	Monitoring the autovacuum Process
	Running VACUUM Manually
	Reducing Table Size with VACUUM FULL

	Changing Server Settings
	Locating and Editing postgresql.conf
	Reloading Settings with pg_ctl

	Backing Up and Restoring Your Database
	Using pg_dump to Back Up a Database or Table
	Restoring a Database Backup with pg_restore
	Additional Backup and Restore Options

	Wrapping Up
	Try It Yourself

	Chapter 18: Identifying and Telling the Story Behind Your Data

	Start with a Question
	Document Your Process
	Gather Your Data
	No Data? Build Your Own Database
	Assess the Data’s Origins
	Interview the Data with Queries
	Consult the Data’s Owner
	Identify Key Indicators and Trends over Time
	Ask Why
	Communicate Your Findings
	Wrapping Up

	Try It Yourself

	Appendix: Additional PostgreSQL Resources

	PostgreSQL Development Environments
	PostgreSQL Utilities, Tools, and Extensions
	PostgreSQL News
	Documentation

	Index

