

Tell us about your PDF experience.

Power BI Desktop developer mode
documentation
Microsoft Power BI Desktop developer mode brings Pro BI developer experiences right
into Power BI Desktop. It provides a suite of features that enable developer focused
capabilities like external tool support, script and API support, source control with Git
integration, and Continuous Integration/Continuous Delivery (CI\CD) with Azure
DevOps.

Power BI Desktop projects

ｐ CONCEPT

Power BI Desktop projects overview

Project dataset folder

Project report folder

Project Git integration

Project Azure DevOps integration

External tools

ｐ CONCEPT

External tools in Power BI Desktop

Register an external tool

Power BI Desktop projects (PREVIEW)
Article • 06/13/2023

Power BI Desktop introduces a new way to author, collaborate, and save your projects.
You can now save your work as a Power BI Project (PBIP). As a project, report and
dataset artifact definitions are saved as individual plain text files in a simple, intuitive
folder structure.

Saving your work as a project has the following benefits:

Text editor support - Artifact definition files are JSON formatted text files
containing model dataset and report metadata. They're publicly documented and
human readable. While project files support simple text editing tools like Notepad,
it's better to use a code editor like Visual Studio Code (VS Code) , which provides
a rich editing experience including intellisense, validation, and Git integration.

Programmatic generation and editing artifact definitions - You can create scripts
using the popular and easy to use Tabular Model Scripting Language (TMSL) , or
create your own custom applications to make changes to your artifact definitions.
Applications can be based on public documentation of the artifact definition
schemas and/or client libraries.

Source control - Power BI dataset and report artifact definitions can be stored in a
source control system, like Git. With Git, you can track version history, compare
revisions (diff), and revert to previous versions. Source control can also unblock
collaboration when using Power BI Desktop by using familiar collaboration
mechanisms for resolving conflicts (merge) and reviewing changes (pull requests).
To learn more, see Version control in Git.

Continuous Integration and Continuous Delivery (CI/CD) - You can use systems
where developers in your organization submit a proposed change to the CI/CD
system. The system then validates the change with a series of quality gates before
applying the change to the production system. These quality gates can include
code reviews by other developers, automated testing, and automated build to

） Important

Power BI Desktop projects is currently in PREVIEW. This information relates to a
prerelease feature that may be substantially modified before being released for
General Availability (GA). Microsoft makes no warranties, expressed or implied, with
respect to the information provided here.

validate the integrity of the changes. CI/CD systems are typically built on top of
existing source control systems. To learn more, see DevOps - Continuous
integration, and DevOps - Continuous delivery.

See Power BI Desktop projects and other developer mode features being introduced at
Microsoft Build 2023.

Empower every BI professional to do more with Microsoft Fabric | Empower every BI professional to do more with Microsoft Fabric | ……

Saving as a project in Power BI Desktop is currently in PREVIEW. Before giving it a try,
you must first enable it in Preview features.

To enable, in Power BI Desktop > File > Options and settings > Options > Preview
features, select the checkbox for Power BI Project (.pbip) save option.

If you're working on a new project or you've opened an existing Power BI Desktop file
(pbix), you can save your work as a Power BI project file (pbip):

Video

Enable preview features

Save as a project

When you save as a project, Power BI Desktop saves report and dataset artifacts as
folders, each containing text files that define the artifact. You see the following:

Let's take a closer look at what you see in your project's root folder:

A collection of files and folders that represent a Power BI dataset. It contains some of
the most important files you're likely to work on, like model.bim. To learn more about
the files and subfolders and files in here, see Project Dataset folder.

A collection of files and folders that represent a Power BI report. To learn more about
the files and subfolders and files in here, see Project report folder.

<project name>.Dataset

<project name>.Report

Specifies intentionally untracked files Git should ignore. Power BI Desktop creates the
.gitignore file in the root folder when saving if it doesn't already exist.

Dataset and report subfolders each have default git ignored files specified in .gitIgnore:

Dataset
.pbi\localSettings.json
.pbi\cache.abf

Report
.pbi\localSettings.json

The PBIP file contains a pointer to a report folder, opening a PBIP opens the targeted
report and model for authoring.

You can open Power BI Desktop from the Power BI Project folder either by opening the
pbip file or the pbir file in the report folder. Both options open the report for editing,
and the dataset, if there's a relative reference to a dataset.

You can save multiple reports and datasets to the same folder. Having a separate pbip
file for each report isn't required because you can open each report directly from the
pbir within the report folder.

.gitIgnore

<project name>.pbip

Open a Power BI Project

When saved as a project, you're not forced into making changes to your dataset and
report definitions only in Power BI Desktop. You can use other tools such as VS Code,
open-source community tools like Tabular Editor, or even Notepad. However, not every
file or change supports editing by external, open-source tools.

Changes to files or properties outside of Power BI Desktop can cause unexpected errors,
or even prevent Power BI Desktop from opening. In those cases, you must resolve the
issues in the files before trying to open the project again in Power BI Desktop.

If possible, Power BI Desktop indicates the file and location of error:

Schema details for the following files aren't documented. During PREVIEW, changes to
these files outside of Power BI Desktop aren't supported:

Report\
report.json
mobileState.json
datasetDiagramLayout.json

Dataset\
diagramLayout.json

You can make changes to the model definition by using external tools in two ways:

By connecting to Power BI Desktop's Analysis Service (AS) instance with external
tools.
By editing JSON metadata in the model.bim file using VS Code or another external
tool.

Not every model object supports write operations. Applying changes outside of the
those supported can cause unexpected results.

Objects that support write operations:

Changes outside Power BI Desktop

Model authoring

Object Connect to AS instance File change

Tables No Yes

Columns Yes , Yes

Calculated tables Yes Yes

Calculated columns Yes Yes

Relationships Yes Yes

Measures Yes Yes

Model KPIs Yes Yes

Calculation groups Yes Yes

Perspectives Yes Yes

Translations Yes Yes

Row Level Security (RLS) Yes Yes

Object Level Security (OLS) Yes Yes

Annotations Yes Yes

M expressions No Yes ,

Keep in mind:

Any changes to open files made outside Power BI Desktop requires a restart for
those changes to be shown in Power BI Desktop. Power BI Desktop isn't aware of
changes to project files made by other tools.

Power BI Desktop doesn’t support tables with multiple partitions. Only a single
partition for each table is supported. Creating tables with empty partitions or more
than one partition results in an error when opening the report.

Automatic date tables created by Power BI Desktop shouldn't be changed by using
external tools.

When changing a model that uses Direct Query to connect a Power BI dataset or
Analysis Services model, you must update the ChangedProperties collection for the
changed object to include any modified properties. If ChangedProperties isn't
updated, Power BI Desktop may overwrite any changes the next time the query is
edited or the model is refreshed in Power BI Desktop.

1 2

3 4

1 - Changing a column's data type is supported. However, renaming columns isn't
supported when connecting to the AS instance.

2 - If the dataset has the Auto date/time feature enabled, and you create a new
datetime column outside of Power BI Desktop, the local date table isn't
automatically generated.

3 - Partition SourceType must be Calculated, M, Entity, or CalculationGroup.
Partition Mode must be Import, DirectQuery, or Dual.

4 - Any expression edits outside of Power BI Desktop in a project with
unappliedChanges.json are lost when those changes are applied.

Most project files contain metadata in JSON format. Corresponding JSON schemas can
be used for validation and documentation.

With JSON schemas, you can:

Learn about configurable properties.
Use inline JSON validation provided by the code editor.
Improve authoring with syntax highlighting, tooltips, and autocomplete.
Use external tools with knowledge of supported properties within project
metadata.

Use VS Code to map JSON schemas to the files being authored. JSON schemas for
project files are provided in the Power BI Desktop samples Git repo .

Power BI Desktop isn't aware of changes made with other tools or applications.
Changes made by using external tools require you to restart Power BI Desktop
before those changes are shown.
Sensitivity labels aren't supported with Power BI projects.
Download PBIX isn't supported for workspaces with Git integration.
Diagram view is ignored when editing models in the Service.
When saving as a Power BI Project, the maximum length of the project files path is
260 characters.

JSON file schemas

Considerations and limitations

Frequently asked questions

Question: Looking at dataset and report artifact folder definitions only a few files are
marked as required, what happens if I delete them?

Answer: Power BI Desktop automatically creates them when you save as a project (PBIP).

Question: Is Power BI Desktop aware of changes I make to the Power BI Project files
from an external tool or application?

Answer: No. Any change made to the files requires Power BI Desktop to be restarted to
reflect those changes.

Question: If I convert a PBIX to a PBIP, can I convert it back to PBIX?

Answer: Yes. You can save a PBIX as a PBIP, or save a PBIP as a PBIX.

Question: Can I convert PBIX into PBIP and vice-versa programmatically?

Answer: No. You can only convert a PBIX into a PBIP and vice-versa using Power BI
Desktop's File > Save as.

Question: The Publish button is disabled when I'm working in a PBIP. How can I publish
my content?

Answer: Publish is disabled while this feature is in PREVIEW. You can either use Fabric
Git Integration to publish your work, or save as a PBIX to publish.

Question: Can I deploy a Power BI Desktop project to Azure Analysis Services (AAS) or
SQL Server Analysis Services (SSAS)?

Answer: No. Power BI Desktop project report definitions aren't supported in AAS and
SSAS. And model definitions use an enhanced metadata unique to Power BI. For AAS
and SSAS projects, use Microsoft Visual Studio for model authoring, Git, and Azure
DevOps integration.

Power BI Desktop project dataset folder
Power BI Desktop project report folder
Power BI Desktop projects Git integration
Power BI Desktop projects Azure DevOps integration
External tools in Power BI Desktop

See also

Power BI Desktop project dataset folder
Article • 06/13/2023

This article describes the files and subfolders in a Microsoft Power BI Desktop project's
Dataset folder. The files and subfolders here represent a Power BI dataset. Depending
on your project, the dataset folder can include:

.pbi\
localSettings.json
editorSettings.json
cache.abf
unappliedChanges.json

model.bim
definition.pbidataset
diagramLayout.json
item.config.json
item.metadata.json

Not every project dataset folder includes all of the files and subfolders described here.

Contains dataset settings that apply only for the current user and computer. It should be
included in gitIgnore or other source control exclusions. By default, this file is ignored by
Git.

For more information, refer to the localSettings.json schema document .

） Important

Power BI Desktop projects is currently in PREVIEW. This information relates to a
prerelease feature that may be substantially modified before being released.
Microsoft makes no warranties, expressed or implied, with respect to the
information provided here.

Dataset files

.pbi\localSettings.json

.pbi\editorSettings.json

Contains dataset editor settings saved as part of the dataset definition for use across
users and environments.

For more information, refer to the editorSettings.json schema document .

An Analysis Services Backup (ABF) file containing a local cached copy of the model and
data when it was last edited. It should be included in gitIgnore or other source control
exclusions. By default, this file is ignored by Git.

Power BI Desktop can open a project without a cache.abf file. In that case, it opens the
report connected to a model with its entire definition but without data. If a cache.abf
exists, Power BI Desktop loads the data and overwrites the model definition with the
content in model.bim.

Power BI Desktop allows you to save changes made in the Transform Data editor (Power
Query) without first applying those changes to the data model.

When you select Apply later, the unapplied changes are saved into the
unappliedChanges.json file. When pending changes are in the unappliedChanges file,
Power BI Desktop prompts you to apply or discard those pending changes:

If you select Apply changes, Power BI Desktop overwrites the queries in model.bim with
the queries from unappliedChanges.json. If you edited queries in model.bim outside of
Power BI Desktop, your changes are lost and replaced by the queries in
unappliedChanges.json when those changes get applied.

.pbi\cache.abf

.pbi\unappliedChanges.json

For more information, refer to the unappliedChanges.json schema document .

Contains a Tabular Model Scripting Language (TMSL) Database object definition of the
project model.

Contains the overall definition of a dataset and core settings.

For more information, refer to the definition.pbidataset schema document .

Contains diagram metadata that defines the structure of the dataset associated with the
report. During PREVIEW, this file doesn't support external editing.

Identifies the folder as a source control representation of a service item. To learn more,
see Git integration source code format - Config file.

For more information, refer to the item.config.json schema document .

Contains attributes that define the item. To learn more, see Git integration source code
format - Metadata file

For more information, refer to the item.metadata.json schema document .

Power BI Desktop project report folder
Power BI Desktop projects
Tabular Model Scripting Language (TMSL)

model.bim

definition.pbidataset

diagramLayout.json

item.config.json

item.metadata.json

See also

Power BI Desktop project report folder
Article • 06/13/2023

This article describes the files and subfolders in a Microsoft Power BI Desktop project's
Report folder. The files and subfolders here represent a Power BI report. Depending on
your project, the report folder can include:

.pbi\
localSettings.json

CustomVisuals\
StaticResources\

RegisteredResources\
datasetDiagramLayout.json
definition.pbir
mobileState.json
report.json
item.config.json
item.metadata.json

Not every project report folder includes all of the files and subfolders described here.

Contains report settings that apply only for the current user and local computer. It
should be included in gitIgnore or other source control exclusions. By default, Git
ignores this file.

For more information, refer to the localSettings.json schema document .

） Important

Power BI Desktop projects is currently in PREVIEW. This information relates to a
prerelease feature that may be substantially modified before being released for
General Availability (GA). Microsoft makes no warranties, expressed or implied, with
respect to the information provided here.

Report files

.pbi\localSettings.json

CustomVisuals\

A subfolder that contains metadata for custom visuals in the report. Power BI supports
three kinds of custom visuals:

Organizational store visuals - Organizations can approve and deploy custom
visuals to Power BI for their organization. To learn more, see Organization store.
AppSource Power BI visuals - Also known as "Public custom visuals". These visuals
are available from Microsoft AppSource. Report developers can install these visuals
directly from Power BI Desktop.
Custom visual files - Also known as "Private custom visuals". The files can be
loaded into the report by uploading a pbiviz package.

Only private custom visuals are loaded into the CustomVisuals folder. AppSource and
Organization visuals are loaded automatically by Power BI Desktop.

A subfolder that includes resource files specific to the report and loaded by the user, like
custom themes, images, and custom visuals (pbiviz files).

Developers are responsible for the files here and changes are supported. For example,
you can change a file and after a Power BI Desktop restart, the new file is loaded into
the report. This folder can unblock some useful scenarios, like:

Authoring custom themes outside of Power BI Desktop by using the public
schema.
Applying batch changes by changing the resource file on multiple reports. For
example, you can switch the corporate custom theme, change between light and
dark themes, and change logo images.

Every resource file must have a corresponding entry in the report.json file, which during
PREVIEW doesn't support editing. Edits to RegisteredResources files are only supported
for already loaded resources that cause Power BI Desktop to register the resource in
report.json.

Contains data model diagrams describing the structure of the dataset associated with
the report. During PREVIEW, this file doesn't support external editing.

RegisteredResources\

datasetDiagramLayout.json

definition.pbir

Contains the overall definition of a report and core settings. This file also holds the
reference to the dataset used by the report. Power BI Desktop can open a pbir file
directly, just the same as if the report were opened from a pbip file. Opening a pbir also
opens the dataset alongside if there's a relative reference using byPath .

Example definition.pbir:

JSON

The definition includes the datasetReference property, which references the dataset
used in the report. The reference can be either:

byPath - Specifies a relative path to the target dataset folder. Absolute paths aren't
supported. A backslash (/) is used as a folder separator. When used, Power BI Desktop
also opens the dataset in full edit mode.

byConnection - Specifies a remote dataset in the Power BI service by using a connection
string. When a byConnection reference is used, Power BI Desktop doesn't open the
dataset in edit mode.

When using a byConnection reference, the following properties must be specified:

Property Description

connectionString The connection string referring to the remote dataset.

pbiModelDatabaseName The remote dataset ID.

connectionType Type of connection. For service remote dataset, this value should
be pbiServiceXmlaStyleLive .

pbiModelVirtualServerName An internal property that should have the value,
sobe_wowvirtualserver .

Example using byConnection :

{
 "version": "1.0",
 "datasetReference": {
 "byPath": {
 "path": "../Sales.Dataset"
 },
 "byConnection": null
 }
}

JSON

For more information, refer to the definition.pbir schema document .

Contains report appearance and behavior settings when rendering on a mobile device.
This file doesn't support external editing.

Defines a report including visuals, page layout, and intended interactions. During
PREVIEW, this file doesn't support external editing.

Identifies the folder as a source control representation of a service item. To learn more,
see Git integration source code format - Config file.

For more information, refer to the item.config.json schema document .

Contains attributes that define the item. To learn more, see Git integration source code
format - Metadata file

For more information, refer to the item.metadata.json schema document .

{
 "version": "1.0",
 "datasetReference": {
 "byPath": null,
 "byConnection": {
 "connectionString": "Data
Source=\"powerbi://api.powerbi.com/v1.0/myorg/Datasets\";Initial
Catalog=Sales;Integrated Security=ClaimsToken",
 "pbiServiceModelId": null,
 "pbiModelVirtualServerName": "sobe_wowvirtualserver",
 "pbiModelDatabaseName": "e244efd3-e253-4390-be28-6be45d9da47e",
 "connectionType": "pbiServiceXmlaStyleLive",
 "name": null
 }
 }
}

mobileState.json

report.json

item.config.json

item.metadata.json

Power BI Desktop project dataset folder
Power BI Desktop projects

See also

Power BI Desktop projects Git
integration
Article • 06/13/2023

Git integration in Microsoft Visual Studio Code (VS Code) enables Pro BI developers
working with Power BI Desktop projects to streamline development processes, source
control, and collaboration with Git repositories.

With Git integration, you can:

Backup and version your work.
Revert to previous states.
Collaborate with others or work alone using Git branches.
Use the capabilities of familiar source control tools, like Azure DevOps.

Be familiar with Git. See Git and GitHub learning resources .
Download and install Git.
Download and install VS Code development environment. It has native
integration with Git. To learn more, see Using Git source control in VS Code .

1. In VS Code, open a Power BI Desktop project folder:

） Important

Power BI Desktop projects is currently in PREVIEW. This information relates to a
prerelease feature that may be substantially modified before being released for
General Availability (GA). Microsoft makes no warranties, expressed or implied, with
respect to the information provided here.

Prerequisites

Create a local Git repo using VS Code

2. Initialize a Git repository by selecting Source Control > Initialize Repository:

3. Do an initial Commit and enter a message:

From now on, any changes you make in Power BI Desktop changes a file in the folder
tracked by your local Git. For example, in Power BI Desktop, when you change a DAX
formula for a measure and then save, it triggers a Git diff on the model.bim file.

With Git integration, you can not only backup your work, but also track your change
history. For example, with GitGraph, a popular free VS Code extension, you can easily
track all your changes.

Power BI Desktop projects Azure DevOps integration
Power BI Desktop project dataset folder
Power BI Desktop project report folder

See also

Power BI Desktop projects Azure
DevOps integration
Article • 06/13/2023

Microsoft Power BI Desktop projects enable developer collaboration by connecting your
local Git repo to a remote Git host, like Azure DevOps.

1. In Azure DevOps , select an existing organization, or create a new one.

2. Create a new Project within the organization:

） Important

Power BI Desktop projects is currently in PREVIEW. This information relates to a
prerelease feature that may be substantially modified before being released for
General Availability (GA). Microsoft makes no warranties, expressed or implied, with
respect to the information provided here.

Create a Git repo in Azure DevOps

3. Enter your project details.

4. Select Repos > Files, and then copy the URL of the remote repo:

5. In Visual Studio Code (VS Code) > Source Control > Remote, select Add Remote.

6. Select Publish Branch.

VS Code takes care of publishing your project into Azure DevOps, where you can
see your project files.

And that's it! You can see with Azure DevOps integration, you can now have multiple
developers working on the same Power BI project. All they need to do is be synced with
the same Azure Devops Git Repo.

If you're using Microsoft Fabric, you can also connect a Fabric workspace to an Azure
DevOps Git repo and get all your content automatically deployed into the service. Git
and Azure DevOps integration can provide a continuous integration workflow not only
from Power BI Desktop to the service, but also from changes made in the service to
Power BI Desktop. To learn more, see Microsoft Fabric - Introduction to git integration.

Power BI Desktop projects Git integration
Power BI Desktop projects

See also

External tools in Power BI Desktop
Article • 06/13/2023

Power BI has a vibrant community of business intelligence professionals and developers.
Community contributors create free tools that use Power BI and Analysis Services APIs
to extend and integrate with Power BI Desktop's data modeling and reporting features.

The External Tools ribbon provides easy access to external tools that are installed locally
and registered with Power BI Desktop. When launched from the External Tools ribbon,
Power BI Desktop passes the name and port number of its internal data model engine
instance and the current model name to the tool. The tool then automatically connects,
providing a seamless connection experience.

External tools generally fall into one of the following categories:

Semantic modeling - Open-source tools such as DAX Studio, ALM Toolkit, Tabular
Editor, and Metadata Translator extend Power BI Desktop functionality for specific data
modeling scenarios such as Data Analysis Expressions (DAX) query and expression
optimization, application lifecycle management (ALM), and metadata translation.

Data analysis - Tools for connecting to a model in read-only to query data and perform
other analysis tasks. For example, a tool might launch Python, Excel, and Power BI
Report Builder. The tool connects the client application to the model in Power BI
Desktop for testing and analysis without having to first publish the Power BI Desktop
(pbix) file to the Power BI service. Tools to document a Power BI dataset also fall into this
category.

Miscellaneous - Some external tools don’t connect to a model at all, but instead extend
Power BI Desktop to make helpful tips and make helpful content more readily
accessible. For example, PBI.tips tutorials, DAX Guide from sqlbi.com, and the
PowerBI.tips Product Business Ops community tool, make installation of a large selection
of external tools easier. These tools also assist registration with Power BI Desktop,
including DAX Studio, ALM Toolkit, Tabular Editor, and many others easy.

Custom - Integrate your own scripts and tools by adding a *.pbitool.json document to
the Power BI Desktop\External Tools folder.

Before installing external tools, keep the following notes in mind:

External tools aren't supported in Power BI Desktop for Power BI Report Server.

External tools are provided by external, third-party contributors. Microsoft doesn't
provide support or documentation for external tools.

There are many external tools out there. Here are some of the most popular and belong
in every Power BI Desktop data modelers toolbox:

Tool Description

PowerBI.tips
- Business
Ops

An easy to use deployment tool for adding external tools extensions to Power BI
Desktop. The Business Ops goal is to provide a one stop shop for installing all the
latest versions of external tools. To learn more, go to PowerBI.tips - Business Ops .

Tabular
Editor

Model creators can easily build, maintain, and manage tabular models by using an
intuitive and lightweight editor. A hierarchical view shows all objects in your tabular
model organized by display folders, with support for multi-select property editing
and DAX syntax highlighting. To learn more, go to tabulareditor.com .

DAX Studio A feature-rich tool for DAX authoring, diagnosis, performance tuning, and analysis.
Features include object browsing, integrated tracing, query execution breakdowns
with detailed statistics, DAX syntax highlighting and formatting. To get the latest,
go to DAX Studio on GitHub.

ALM Toolkit A schema compare tool for Power BI models and datasets, used for application
lifecycle management (ALM) scenarios. You can perform straightforward
deployment across environments and retain incremental refresh historical data. You
can diff and merge metadata files, branches, and repos. You can also reuse
common definitions between datasets. To get the latest, go to alm-toolkit.com .

Metadata
Translator

Streamlines localization of Power BI models and datasets. The tool can
automatically translate captions, descriptions, and display folder names of tables,
columns, measures, and hierarchies. The tool translates by using the machine
translation technology of Azure Cognitive Services. You can also export and import
translations via Comma Separated Values (.csv) files for convenient bulk editing in
Excel or a localization tool. To get the latest, go to Metadata Translator on
GitHub.

Power BI Desktop (pbix) files consist of multiple components including the report
canvas, visuals, model metadata, and any data that was loaded from data sources. When

Featured open-source tools

External tools integration architecture

Power BI Desktop opens a pbix file, it launches an Analysis Services process in the
background to load the model so that the data modeling features and report visuals can
access model metadata and query model data.

When Power BI Desktop launches Analysis Services as its analytical data engine, it
dynamically assigns a random port number. It also loads the model with a randomly
generated name in the form of a globally unique identifier (GUID). Because these
connection parameters change with every Power BI Desktop session, it's difficult for
external tools to discover on their own the correct Analysis Services instance and model
to connect to. External tools integration solves this problem by allowing Power BI
Desktop to send the Analysis Services server name, port number, and model name to
the tool as command-line parameters when starting the external tool from the External
Tools ribbon, as shown in the following diagram.

With the Analysis Services Server name, port number, and model name, the tool uses
Analysis Services client libraries to establish a connection to the model, retrieve
metadata, and execute DAX or MDX queries. Whenever an external data modeling tool
updates the metadata, Power BI Desktop synchronizes the changes so that the Power BI
Desktop user interface reflects the current state of the model accurately. Keep in mind
there are some limitations to the synchronization capabilities as described later.

External tools, which connect to Power BI Desktop's Analysis Services instance, can make
changes (write operations) to the data model. Power BI Desktop then synchronizes
those changes with the report canvas so they're shown in report visuals. For example,
external data modeling tools can override the original format string expression of a
measure, and edit any of the measure properties including KPIs and detail rows. External
tools can also create new roles for object and row-level security, and add translations.

Data modeling operations

Objects that support write operations:

Object Connect to AS instance

Tables No

Columns Yes

Calculated tables Yes

Calculated columns Yes

Relationships Yes

Measures Yes

Model KPIs Yes

Calculation groups Yes

Perspectives Yes

Translations Yes

Row Level Security (RLS) Yes

Object Level Security (OLS) Yes

Annotations Yes

M expressions No

1 - When using external tools to connect to the AS instance, changing a column's data
type is supported, however, renaming columns is not supported.

Power BI Desktop project files offer a broader scope of supported write operations.
Those objects and operations that don't support write operations by using external tools
to connect to Power BI Desktop's Analysis Services instance may be supported by
editing Power BI Desktop project files. To learn more, see Power BI Desktop projects -
Model authoring.

All Tabular Object Model (TOM) metadata can be accessed for read-only. Write
operations are limited because Power BI Desktop must remain in-sync with the external
modifications, therefore the following operations aren't supported:

Supported write operations

1

Data modeling limitations

Any TOM object types not covered in Supported write operations, such as tables
and columns.
Editing a Power BI Desktop template (PBIT) file.
Report-level or data-level translations.
Renaming tables and columns isn't yet supported
Sending processing commands to a dataset loaded in Power BI Desktop

External tools are registered with Power BI Desktop when the tool includes a
*.pbitool.json registration file in the C:\Program Files (x86)\Common Files\Microsoft
Shared\Power BI Desktop\External Tools folder. When a tool is registered, and includes
an icon, the tool appears in the External Tools ribbon. Some tools, like ALM Toolkit and
DAX Studio create the registration file automatically when you install the tool. However,
many tools, like SQL Profiler typically don't because the installer they do have doesn't
include creating a registration file for Power BI Desktop. Tools that don't automatically
register with Power BI Desktop can be registered manually by creating a *.pbitool.json
registration file.

To learn more, including json examples, see Register an external tool.

The External Tools ribbon is enabled by default, but can be disabled by using Group
Policy or editing the EnableExternalTools registry key directly.

Registry key: Software\Policies\Microsoft\Power BI Desktop\
Registry value: EnableExternalTools

A value of 1 (decimal) enables the External Tools ribbon, which is also the default value.

A value of 0 (decimal) disable the External Tools ribbon.

Register an external tool

Registering external tools

Disabling the External Tools ribbon

See also

Register an external tool
Article • 01/12/2023

Some tools must be manually registered with Power BI Desktop. To register an external
tool, create a JSON file with the following example code:

JSON

The pbitool.json file includes the following elements:

name: Provide a name for the tool, which will appear as a button caption in the
External Tools ribbon within Power BI Desktop.
description: (optional) Provide a description, which will appear as a tooltip on the
External Tools ribbon button within Power BI Desktop.
path: Provide the fully qualified path to the tool executable.
arguments: (optional) Provide a string of command-line arguments that the tool
executable should be launched with. You can use any of the following
placeholders:

%server%: Replaced with the server name and portnumber of the local instance
of Analysis Services Tabular for imported/DirectQuery data models.
%database%: Replaced with the database name of the model hosted in the
local instance of Analysis Services Tabular for imported/DirectQuery data
models.

iconData: Provide image data, which will be rendered as a button icon in the
External Tools ribbon within Power BI Desktop. The string should be formatted
according to the syntax for Data URIs without the "data:" prefix.

Name the file "<tool name>.pbitool.json" and place it in the following folder:

%commonprogramfiles%\Microsoft Shared\Power BI Desktop\External Tools

For 64-bit environments, place the files in the following folder:

Program Files (x86)\Common Files\Microsoft Shared\Power BI Desktop\External
Tools

{
 "name": "<tool name>",
 "description": "<tool description>",
 "path": "<tool executable path>",
 "arguments": "<optional command line arguments>",
 "iconData": "image/png;base64,<encoded png icon data>"
}

Files in that specified location with the .pbitool.json extension are loaded by Power BI
Desktop upon startup.

The following *.pbitool.json file launches powershell.exe from the External Tools ribbon
and runs a script called pbiToolsDemo.ps1. The script passes the server name and port
number in the -Server parameter and the dataset name in the -Database parameter.

JSON

The corresponding pbiToolsDemo.ps1 script outputs the Server and Database
parameters to the console.

PowerShell

Example

{
 "version": "1.0.0",
 "name": "External Tools Demo",
 "description": "Launches PowerShell and runs a script that outputs
server and database parameters. (Requires elevated PowerShell
permissions.)",
 "path":
"C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe",
 "arguments": "C:\\pbiToolsDemo.ps1 -Server \"%server%\" -Database
\"%database%\"",
 "iconData":
"image/png;base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAAAXNSR0IArs
4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsEAAA7BAbiRa+0AAAANSURBVBhXY/jH9+8/AA
ciAwpql7QkAAAAAElFTkSuQmCC"
}

[CmdletBinding()]
param
(
 [Parameter(Mandatory = $true)]
[string] $Server,
 [Parameter(Mandatory = $true)]
[string] $Database
)
Write-Host ""
Write-Host "Analysis Services instance: " -NoNewline
Write-Host "$Server" -ForegroundColor Yellow
Write-Host "Dataset name: " -NoNewline
Write-Host "$Database" -ForegroundColor Green
Write-Host ""
Read-Host -Prompt 'Press [Enter] to close this window'

To include an icon in the External Tools ribbon, the pbitool.json registration file must
include an iconData element.

The iconData element takes a data URI without the data: prefix. For example, the data
URI of a one pixel magenta png image is:



QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsEAAA7BAbiRa+0AAAANSURBVBhXY/jH9+8/AAciAwpql7Qk

AAAAAElFTkSuQmCC

Be sure to remove the data: prefix, as shown in the pbitool.json preceding example.

To convert a .png or other image file type to a data URI, use an online tool or a custom
tool such as the one shown in the following C# code snippet:

c#

Icon data URIs

string ImageDataUri;
OpenFileDialog openFileDialog1 = new OpenFileDialog();
openFileDialog1.Filter = "PNG Files (.png)|*.png|All Files (*.*)|*.*";
openFileDialog1.FilterIndex = 1;
openFileDialog1.Multiselect = false;

External tools in Power BI Desktop
Analysis Services client libraries
Tabular Object Model (TOM)

openFileDialog1.CheckFileExists = true;
bool? userClickedOK = openFileDialog1.ShowDialog();
if (userClickedOK == true)
{
 var fileName = openFileDialog1.FileName;
 var sb = new StringBuilder();
 sb.Append("image/")
 .Append((System.IO.Path.GetExtension(fileName) ??
"png").Replace(".", ""))
 .Append(";base64,")
 .Append(Convert.ToBase64String(File.ReadAllBytes(fileName)));
 ImageDataUri = sb.ToString();
}

See also

	Power BI Desktop developer mode documentation
	Power BI Desktop projects
	Power BI Desktop projects overview
	Project dataset folder
	Project report folder
	Git integration
	Azure DevOps integration

	External tools
	External tools in Power BI Desktop
	Register an external tool

	Blank Page

