

 Getting Started:

Before you start, make sure you have
the MySQL Connector/Python library
installed.

pip install mysql-connector-python

 Establish a connection

import mysql.connector
Establish a connection
connection= mysql.connector.connect(
 host="localhost",
 user="username",
 password="password",
 database="mydb"
)

 Executing Queries

You can execute SQL queries using a
cursor. Please note a single cursor
can also be used in entire program.

cursor = connection.cursor()

Execute SQL query
cursor.execute("SELECT*FROM mytable")

Fetch results
result = cursor.fetchall()

Don't forget to commit changes
connection.commit()

Close the cursor and connection
cursor.close()
connection.close()

 Inserting Data

Adding data to a table.

cursor = connection.cursor()

Insert data
sql = "INSERT INTO mytable (column1,
column2) VALUES (%s, %s)"
values = ("value1", "value2")

cursor.execute(sql, values)

Commit and close

connection.commit()
cursor.close()

 Updating Data

Modify existing data.

cursor = connection.cursor()

Update data
sql = "UPDATE mytable SET column1 = %s
WHERE column2 = %s"
values =("new_value","criteria_value")

cursor.execute(sql, values)

Commit and close

connection.commit()
cursor.close()

 Deleting Data

Remove data from a table.

cursor = connection.cursor()

Delete data
sql = "DELETE FROM mytable WHERE
column = %s"
value = "value_to_delete"

cursor.execute(sql,(value,))

Commit and close

connection.commit()
cursor.close()

 Fetching Data

Retrieve data from a query.

Execute SQL query
cursor.execute("SELECT * FROM mytable")

Fetch one row
row = cursor.fetchone()

Fetch all rows
rows = cursor.fetchall()

Close the cursor
cursor.close()

 Using Prepared Statements

Prevent SQL injection by using
prepared statements.

cursor = connection.cursor(prepared=True)

Execute prepared statement
stmt = "INSERT INTO mytable (column1,
column2) VALUES (?, ?)"
data = ("value1", "value2")

cursor.execute(stmt, data)

Commit and close

connection.commit()
cursor.close()

 Transaction Management

Manage transactions to ensure data
consistency.

connection.start_transaction()

try:

 # Your database operations here
 connection.commit()

except:
 # Undo operations in case of error
 connection.rollback()

Close the connection
connection.close()

FOLLOW FOR
MORE
CONTENT
FARDEEN AHMAD KHAN

https://fardeenk.medium.com

https://linkedin.com/in/meetfardeen

Read my Technical Articles on:

https://github.com/I-Fardeen

SAVE THIS POST

