1

Linear Algebra for Machine Learning

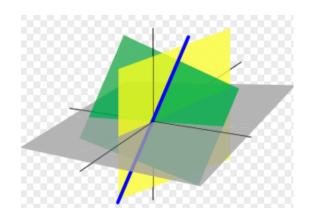
Sargur N. Srihari srihari@cedar.buffalo.edu

What is linear algebra?

• Linear algebra is the branch of mathematics concerning linear equations such as

$$a_1x_1 + \ldots + a_nx_n = b$$

- In vector notation we say $\boldsymbol{a}^{\mathrm{T}}\boldsymbol{x}=b$
- Called a linear transformation of \boldsymbol{x}
- Linear algebra is fundamental to geometry, for defining objects such as lines, planes, rotations



Linear equation $a_1x_1+\ldots+a_nx_n=b$ defines a plane in (x_1,\ldots,x_n) space Straight lines define common solutions to equations

Why do we need to know it?

- Linear Algebra is used throughout engineering
 - Because it is based on continuous math rather than discrete math
 - Computer scientists have little experience with it
- Essential for understanding ML algorithms
 - E.g., We convert input vectors $(x_1,..,x_n)$ into outputs by a series of linear transformations
- Here we discuss:
 - Concepts of linear algebra needed for ML
 - Omit other aspects of linear algebra

Linear Algebra Topics

- Scalars, Vectors, Matrices and Tensors
- Multiplying Matrices and Vectors
- Identity and Inverse Matrices
- Linear Dependence and Span
- Norms
- Special kinds of matrices and vectors
- Eigendecomposition
- Singular value decomposition
- The Moore Penrose pseudoinverse
- The trace operator
- The determinant
- Ex: principal components analysis

Scalar

- Single number
 - In contrast to other objects in linear algebra, which are usually arrays of numbers
- Represented in lower-case italic \boldsymbol{x}
 - They can be real-valued or be integers
 - E.g., let $x \in \mathbb{R}$ be the slope of the line
 - Defining a real-valued scalar
 - E.g., let $n \in \mathbb{N}$ be the number of units
 - Defining a natural number scalar

Vector

- An array of numbers arranged in order
- Each no. identified by an index
- Written in lower-case bold such as $oldsymbol{x}$
 - its elements are in italics lower case, subscripted

- If each element is in R then \boldsymbol{x} is in R^n
- We can think of vectors as points in space
 - Each element gives coordinate along an axis

Matrices

- 2-D array of numbers
 - So each element identified by two indices
- Denoted by bold typeface A
 - Elements indicated by name in italic but not bold
 - $A_{1,1}$ is the top left entry and $A_{m,n}$ is the bottom right entry
 - We can identify nos in vertical column *j* by writing : for the horizontal coordinate

• E.g.,
$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$$

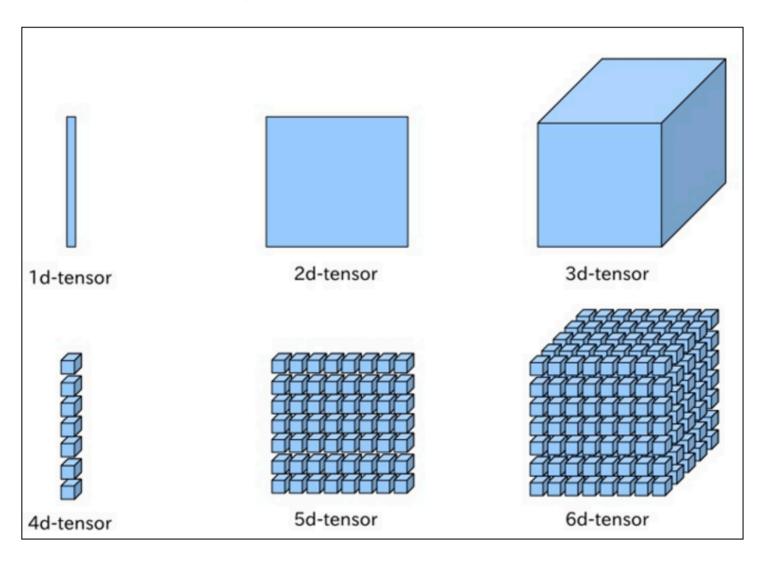
• $A_{i:}$ is i^{th} row of $A, A_{:j}$ is j^{th} column of A

• If A has shape of height m and width n with real-values then $A \in \mathbb{R}^{m \times n}$

Tensor

- Sometimes need an array with more than two axes
 - E.g., an RGB color image has three axes
- A tensor is an array of numbers arranged on a regular grid with variable number of axes
 - See figure next
- Denote a tensor with this bold typeface: A
- Element (i,j,k) of tensor denoted by $A_{i,j,k}$

Shapes of Tensors



Transpose of a Matrix

- An important operation on matrices
- The transpose of a matrix $oldsymbol{A}$ is denoted as $oldsymbol{A}^{\mathrm{T}}$
- Defined as

$$(\mathbf{A}^{\mathrm{T}})_{i,j} = A_{j,i}$$

- The mirror image across a diagonal line
 - Called the main diagonal, running down to the right starting from upper left corner

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{1,3} & A_{2,3} & A_{3,3} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{1,3} & A_{2,3} & A_{3,3} \end{bmatrix}$$

Vectors as special case of matrix

- Vectors are matrices with a single column
- Often written in-line using transpose

$$\boldsymbol{x} = [x_1, \dots, x_n]^{\mathrm{T}}$$

- A scalar is a matrix with one element $a = a^{\mathrm{T}}$

Matrix Addition

- We can add matrices to each other if they have the same shape, by adding corresponding elements
 - If A and B have same shape (height m, width n)

$$C = A + B \Longrightarrow C_{i,j} = A_{i,j} + B_{i,j}$$

- A scalar can be added to a matrix or multiplied by a scalar $D = aB + c \Rightarrow D_{i,j} = aB_{i,j} + c$
- Less conventional notation used in ML:
 - Vector added to matrix $C = A + b \Rightarrow C_{i,j} = A_{i,j} + b_j$
 - Called broadcasting since vector b added to each row of A

Multiplying Matrices

- For product *C*=*AB* to be defined, *A* has to have the same no. of columns as the no. of rows of *B*
 - If A is of shape mxn and B is of shape nxp then matrix product C is of shape mxp

$$C = AB \Longrightarrow C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

- Note that the standard product of two matrices is not just the product of two individual elements
 - Such a product does exist and is called the element-wise product or the Hadamard product $A \odot B$

Multiplying Vectors

- Dot product between two vectors x and y of same dimensionality is the matrix product $x^{\mathrm{T}}y$
- We can think of matrix product C=AB as computing C_{ij} the dot product of row i of A and column j of B

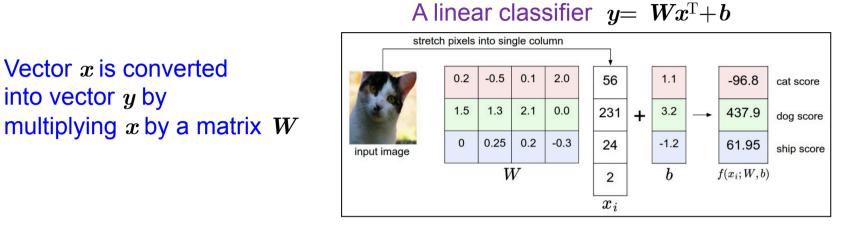
Matrix Product Properties

- Distributivity over addition: A(B+C)=AB+AC
- Associativity: A(BC) = (AB)C
- Not commutative: AB=BA is not always true
- Dot product between vectors is commutative: $x^{\mathrm{T}}y = y^{\mathrm{T}}x$
- Transpose of a matrix product has a simple form: $(AB)^{T} = B^{T}A^{T}$

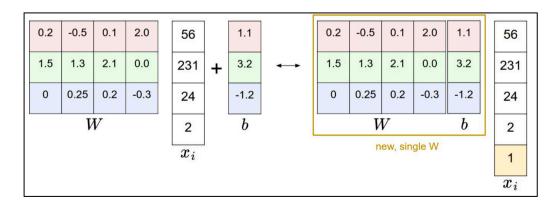
Vector x is converted

into vector y by

Example flow of tensors in ML



A linear classifier with bias eliminated $y = Wx^{T}$

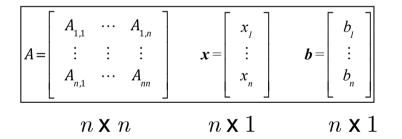


Linear Transformation

- where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$

- More explicitly $\begin{array}{c}
A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1 \\
A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2 \\
A_{n1}x_1 + A_{m2}x_2 + \dots + A_{n,n}x_n = b_n
\end{array}$

n equations in n unknowns



Can view A as a linear transformation of vector x to vector b

 Sometimes we wish to solve for the unknowns $x = \{x_1, \dots, x_n\}$ when A and b provide constraints

17

Identity and Inverse Matrices

- Matrix inversion is a powerful tool to analytically solve Ax=b
- Needs concept of Identity matrix
- Identity matrix does not change value of vector when we multiply the vector by identity matrix
 - Denote identity matrix that preserves n-dimensional vectors as I_n

- Formally
$$I_n \in \mathbb{R}^{n \times n}$$
 and $\forall \mathbf{x} \in \mathbb{R}^n, I_n \mathbf{x} = \mathbf{x}$
- Example of I_3 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Matrix Inverse

- Inverse of square matrix A defined as
 - $A^{-1}A = I_n$
- We can now solve Ax = b as follows:

$$A\mathbf{x} = \mathbf{b}$$
$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$
$$I_n \mathbf{x} = A^{-1}\mathbf{b}$$
$$\mathbf{x} = A^{-1}\mathbf{b}$$

- This depends on being able to find A^{-1}
- If *A*⁻¹ exists there are several methods for finding it

Solving Simultaneous equations

•
$$Ax = b$$

where *A* is $(M+1) \times (M+1)$ *x* is $(M+1) \times 1$: set of weights to be determined *b* is $N \times 1$ Machine Learnir Example: System of Linear Srihari Equations in Linear Regression

- Instead of Ax=b
- We have $\Phi w = t$
 - where Φ is $m \ge n$ design matrix of m features for n samples x_j , j=1,..n
 - -w is weight vector of m values
 - *t* is target values of sample, $t = [t_1, .., t_n]$
 - We need weight \boldsymbol{w} to be used with m features to determine output

$$y(\boldsymbol{x}, \boldsymbol{w}) = \sum_{i=1}^{m} w_i x_i$$

Closed-form solutions

Two closed-form solutions
 1.Matrix inversion x=A⁻¹b
 2.Gaussian elimination

Linear Equations: Closed-Form Solutions

1. Matrix Formulation: *Ax*=*b* Solution: $x = A^{-1}b$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ x_n \end{bmatrix}$$

2 f

x + 3y -

3x + 5y +

2x + 4y +

$$\begin{array}{c} 2z = 5\\ 6z = 7\\ 3z = 8 \end{array} \xrightarrow{} \begin{array}{c} L_2 - 3L_1 \xrightarrow{} L_2 & L_3 - 2L_1 \xrightarrow{} L_3 & -L_2/4 \xrightarrow{} L_2 \\ \hline 1 & 3 & -2 & | & 5\\ 3 & 5 & 6 & | & 7\\ 2 & 4 & 3 & | & 8 \end{array} \xrightarrow{} \begin{array}{c} \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 0 & -4 & 12 & | & -8\\ 2 & 4 & 3 & | & 8 \end{array} \right] \sim \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 0 & -4 & 12 & | & -8\\ 0 & -2 & 7 & | & -2 \end{array} \right] \sim \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 0 & 1 & -3 & | & 2\\ 0 & -2 & 7 & | & -2 \end{array} \right] \\ & \qquad \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 2 & 4 & 3 & | & 8 \end{array} \right] \sim \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 0 & -4 & 12 & | & -8\\ 0 & -2 & 7 & | & -2 \end{array} \right] \sim \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 0 & -2 & 7 & | & -2 \end{array} \right] \\ & \qquad \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 0 & 1 & -3 & | & 2\\ 0 & 0 & 1 & | & 2 \end{array} \right] \sim \left[\begin{array}{c} 1 & 3 & -2 & | & 5\\ 0 & 1 & 0 & | & 8\\ 0 & 0 & 1 & | & 2 \end{array} \right] \sim \left[\begin{array}{c} 1 & 3 & 0 & | & 9\\ 0 & 1 & 0 & | & 8\\ 0 & 0 & 1 & | & 2 \end{array} \right] \sim \left[\begin{array}{c} 1 & 0 & 0 & | & -15\\ 0 & 1 & 0 & | & 8\\ 0 & 0 & 1 & | & 2 \end{array} \right] \end{array} \right]$$

 b_2

: .

Disadvantage of closed-form solutions

- If A^{-1} exists, the same A^{-1} can be used for any given b
 - But A^{-1} cannot be represented with sufficient precision
 - It is not used in practice
- Gaussian elimination also has disadvantages
 - numerical instability (division by small no.)
 - $-O(n^3)$ for $n \ge n$ matrix
- Software solutions use value of b in finding x
 - -E.g., difference (derivative) between b and output is used iteratively

- System of equations with
 - *n* variables and *m* equations is:
- Solution is $x = A^{-1}b$

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$
$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$
$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

- In order for A⁻¹ to exist Ax=b must have exactly one solution for every value of b
 - It is also possible for the system of equations to have *no solutions* or an *infinite no. of solutions* for some values of *b*
 - It is not possible to have more than one but fewer than infinitely many solutions
 - If x and y are solutions then $z=\alpha x + (1-\alpha) y$ is a solution for any real α

Span of a set of vectors

- Span of a set of vectors: set of points obtained by a *linear combination* of those vectors
 - A linear combination of vectors $\{v^{(1)}, ..., v^{(n)}\}$ with coefficients c_i is $\sum_i c_i v^{(i)}$
 - System of equations is Ax=b
 - A column of A, i.e., $A_{:i}$ specifies travel in direction i
 - How much we need to travel is given by x_i
 - This is a linear combination of vectors

$$\boldsymbol{A}\boldsymbol{x} = \sum_{i} x_{i} A_{:,i}$$

- Thus determining whether Ax=b has a solution is equivalent to determining whether b is in the span of columns of A
 - This span is referred to as *column space* or *range* of A

Conditions for a solution to Ax=b

- Matrix must be square, i.e., *m=n* and all columns must be *linearly independent*
 - Necessary condition is $n \ge m$
 - For a solution to exist when $A \in \mathbb{R}^{m \times n}$ we require the column space be all of \mathbb{R}^m
 - Sufficient Condition
 - If columns are linear combinations of other columns, column space is less than \mathbb{R}^m
 - Columns are linearly dependent or matrix is singular
 - For column space to encompass \mathbb{R}^m at least one set of *m* linearly independent columns
- For non-square and singular matrices
 - Methods other than matrix inversion are used

Use of a Vector in Regression

- A design matrix
 - N samples, D features

- Feature vector has three dimensions
- This is a regression problem

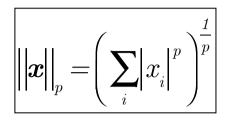
Norms

- Used for measuring the size of a vector
- Norms map vectors to non-negative values
- Norm of vector $\boldsymbol{x} = [x_1, ..., x_n]^{\mathrm{T}}$ is distance from origin to \boldsymbol{x}
 - It is any function *f* that satisfies:

$$\begin{aligned} f(\boldsymbol{x}) &= 0 \Longrightarrow \boldsymbol{x} = 0 \\ f(\boldsymbol{x} + \boldsymbol{y}) &\leq f(\boldsymbol{x}) + f(\boldsymbol{y}) & \text{Triangle Inequality} \\ \forall \alpha \in R \quad f(\alpha \boldsymbol{x}) = |\alpha| f(\boldsymbol{x}) \end{aligned}$$

L^P Norm

• Definition:



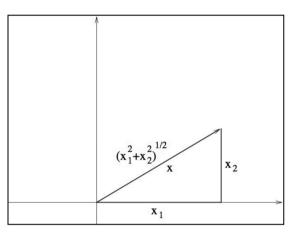
- $-L^2$ Norm
 - Called Euclidean norm
 - Simply the Euclidean distance between the origin and the point x
 - written simply as ||x||
 - Squared Euclidean norm is same as $x^{\mathrm{T}}x$
- $-L^1$ Norm
 - Useful when 0 and non-zero have to be distinguished

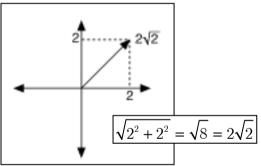
- Note that L^2 increases slowly near origin, e.g., $0.1^2=0.01$)

$$-L^{\infty}$$
 Norm

$$\left\| \left| \boldsymbol{x} \right| \right\|_{\infty} = \max_{i} \left| x_{i} \right|$$

Called max norm

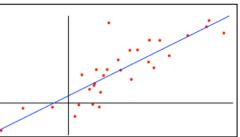


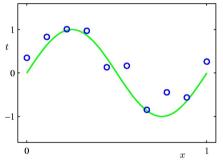


Machine Learning

Use of norm in Regression

• Linear Regression x: a vector, w: weight vector $y(x,w) = w_0 + w_1 x_1 + ... + w_d x_d = w^T x$ With nonlinear basis functions ϕ_j $y(x,w) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(x)$





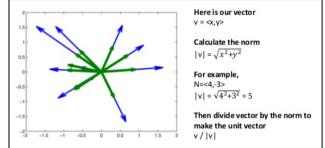
Loss Function

$$\tilde{E}(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \{ y(\boldsymbol{x}_{n}, \boldsymbol{w}) - t_{n} \}^{2} + \frac{\lambda}{2} || \boldsymbol{w}^{2} ||$$

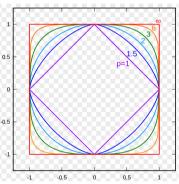
Second term is a weighted norm called a regularizer (to prevent overfitting) ³¹

L^P Norm and Distance

• Norm is the length of a vector



- We can use it to draw a unit circle from origin
 - Different P values yield different shapes
 - Euclidean norm yields a circle



• Distance between two vectors (v, w)

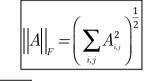
$$-\operatorname{dist}(\boldsymbol{v,w}) = ||\boldsymbol{v-w}||$$

$$= \sqrt{(v_1 - w_1)^2 + .. + (v_n - w_n)^2}$$

Distance to origin would just be sqrt of sum of squares ³²

Machine Learning Size of a Matrix: Frobenius Norm

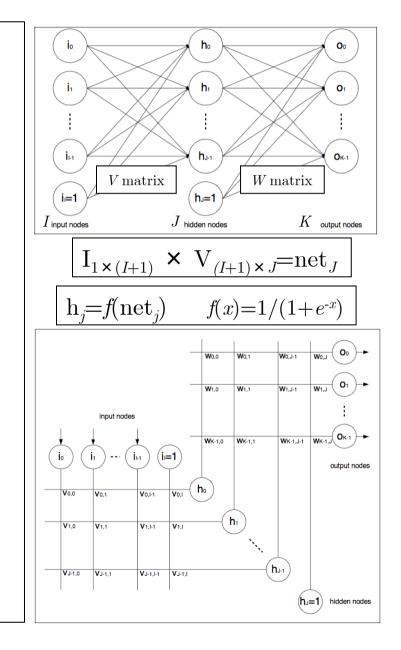
• Similar to L^2 norm



$$\begin{vmatrix} 2 & -1 & 5 \\ 0 & 2 & 1 \\ 3 & 1 & 1 \end{vmatrix} ||A|| = \sqrt{4 + 1 + 25 + .. + 1} = \sqrt{46}$$

- Frobenius in ML
 - Layers of neural network involve matrix multiplication
 - Regularization:
 - minimize Frobenius of weight matrices || *W*(*i*)|| over *L* layers

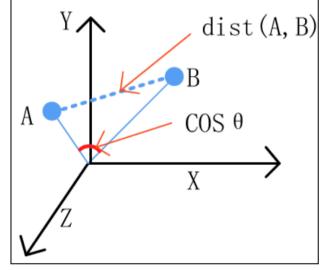
$$J_R = J + \lambda \sum_{i=1}^{L} \left\| W^{(i)} \right\|_F$$



Angle between Vectors

• Dot product of two vectors can be written in terms of their L^2 norms and angle θ between them $x^T y \Rightarrow ||x||_{p} ||y||_{p} \cos \theta$

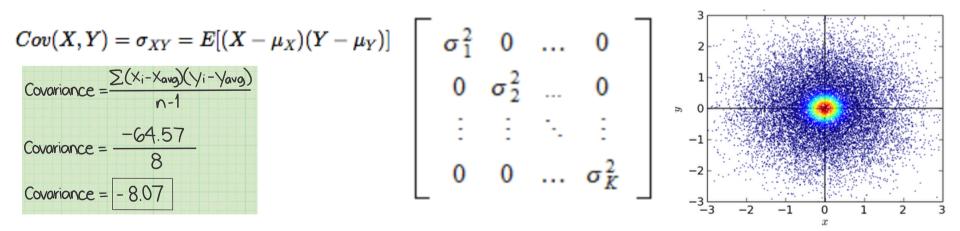
$$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$



Machine Learning

Special kind of Matrix: Diagonal

- Diagonal Matrix has mostly zeros, with nonzero entries only in diagonal
 - E.g., identity matrix. where all diagonal entries are 1 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
 - E.g., covariance matrix with independent features



If Cov(X, Y) = 0 then E(XY) = E(X)E(Y)

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

b

Efficiency of Diagonal Matrix

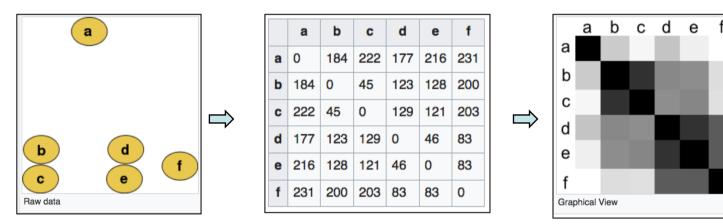
- diag (v) denotes a square diagonal matrix with diagonal elements given by entries of vector v
- Multiplying vector \boldsymbol{x} by a diagonal matrix is efficient
 - To compute $\operatorname{diag}(\boldsymbol{v})\boldsymbol{x}$ we only need to scale each x_i

$$\mathbf{y} v_i$$
 $\operatorname{diag}(\mathbf{v})\mathbf{x} = \mathbf{v} \odot \mathbf{x}$

- Inverting a square diagonal matrix is efficient
 - Inverse exists iff every diagonal entry is nonzero, in which case diag $(v)^{-1}$ =diag $([1/v_1,..,1/v_n]^T)$

Special kind of Matrix: Symmetric

- A symmetric matrix equals its transpose: $A = A^T$
 - E.g., a distance matrix is symmetric with $A_{ij}=A_{ji}$



- E.g., covariance matrices are symmetric

$\Sigma =$	1	.5	.15	.15	0	0	
	.5	1	.15	.15	0	0	
	.15	.15	1	.25	0	0	
	.15	.15	.25	1	0	0	1
	0	0	0	0	1	.10	
	0	0	0	0	.10	1	

Special Kinds of Vectors

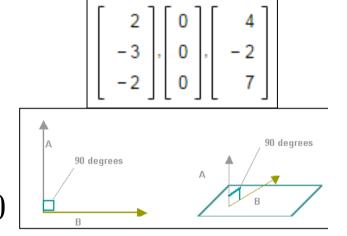
 $||x||_{2} = 1$

- Unit Vector
 - A vector with unit norm
- Orthogonal Vectors
 - A vector \boldsymbol{x} and a vector \boldsymbol{y} are orthogonal to each other if $\boldsymbol{x}^{\mathrm{T}}\boldsymbol{y}=0$
 - If vectors have nonzero norm, vectors at 90 degrees to each other
 - Orthonormal Vectors
 - Vectors are orthogonal & have unit norm
 - Orthogonal Matrix
 - A square matrix whose rows are mutually

orthonormal: $A^{\mathrm{T}}A = AA^{\mathrm{T}} = I$

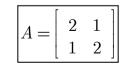
$$- A^{-1} = A^{T}$$

Orthogonal matrices are of interest because their inverse is very cheap to compute

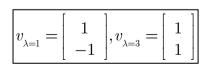


Matrix decomposition

- Matrices can be decomposed into factors to learn universal properties, just like integers:
 - Properties not discernible from their representation
 - 1.Decomposition of integer into prime factors
 - From $12=2 \times 2 \times 3$ we can discern that
 - 12 is not divisible by 5 or
 - any multiple of 12 is divisible by 3
 - But representations of 12 in binary or decimal are different
 - **2.Decomposition of Matrix** A as $A = V \operatorname{diag}(\lambda) V^{-1}$
 - where V is formed of eigenvectors and λ are eigenvalues, e.g,



has eigenvalues $\lambda = 1$ and $\lambda = 3$ and eigenvectors V:



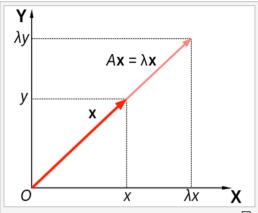
Eigenvector

 An eigenvector of a square matrix
 A is a non-zero vector v such that multiplication by A only changes the scale of v

$$Av = \lambda v$$

– The scalar λ is known as eigenvalue

 If v is an eigenvector of A, so is any rescaled vector sv. Moreover sv still has the same eigen value. Thus look for a unit eigenvector



Matrix *A* acts by stretching the vector \square *x*, not changing its direction, so *x* is an eigenvector of *A*.

Wikipedia

Eigenvalue and Characteristic Polynomial

• Consider Av = w

- If v and w are scalar multiples, i.e., if $Av = \lambda v$
 - then *v* is an eigenvector of the linear transformation A and the scale factor λ is the eigenvalue corresponding to the eigen vector
- This is the *eigenvalue equation* of matrix *A*
 - Stated equivalently as $(A-\lambda I)v=0$
 - This has a non-zero solution if $|A-\lambda I|=0$ as
 - The polynomial of degree n can be factored as

 $|A-\lambda \mathbf{I}| = (\lambda_1 - \lambda)(\lambda_2 - \lambda)\dots(\lambda_n - \lambda)$

• The $\lambda_1, \lambda_2...\lambda_n$ are roots of the polynomial and are eigenvalues of A

Example of Eigenvalue/Eigenvector

Consider the matrix

$$A = \left[\begin{array}{rrr} 2 & 1 \\ 1 & 2 \end{array} \right]$$

• Taking determinant of $(A-\lambda I)$, the char poly is

$$\mid A - \lambda I \mid = \left[\begin{array}{cc} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{array} \right] = 3 - 4\lambda + \lambda^2$$

- It has roots $\lambda = 1$ and $\lambda = 3$ which are the two eigenvalues of A
- The eigenvectors are found by solving for v in $Av = \lambda v$, which are $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\begin{bmatrix} v_{\lambda=1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_{\lambda=3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Eigendecomposition

- Suppose that matrix A has n linearly independent eigenvectors {v⁽¹⁾,...,v⁽ⁿ⁾} with eigenvalues {λ₁,...,λ_n}
- Concatenate eigenvectors to form matrix \boldsymbol{V}
- Concatenate eigenvalues to form vector $\lambda = [\lambda_1, ..., \lambda_n]$
- Eigendecomposition of *A* is given by

 $A = V \operatorname{diag}(\lambda) V^{-1}$

Decomposition of Symmetric Matrix

• Every real symmetric matrix *A* can be decomposed into real-valued eigenvectors and eigenvalues

$$A = Q \Lambda Q^{\mathrm{T}}$$

where Q is an orthogonal matrix composed of eigenvectors of A: $\{v^{(1)}, ..., v^{(n)}\}$

orthogonal matrix: components are orthogonal or $v^{(i)T}v^{(j)}=0$

Λ is a diagonal matrix of eigenvalues $\{\lambda_1, ..., \lambda_n\}$

- We can think of A as scaling space by λ_i in direction $v^{(i)}$
 - See figure on next slide

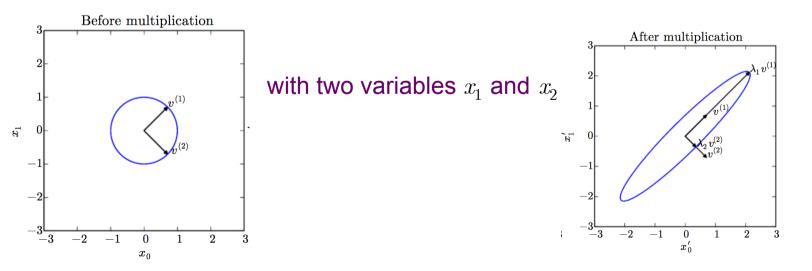
Effect of Eigenvectors and Eigenvalues

- Example of 2×2 matrix
- Matrix A with two orthonormal eigenvectors

 $-v^{(1)}$ with eigenvalue $\lambda_1, v^{(2)}$ with eigenvalue λ_2

Plot of unit vectors
$$u \in \mathbb{R}^2$$
 (circle)

Plot of vectors Au (ellipse)



Eigendecomposition is not unique

- Eigendecomposition is $A = Q \Lambda Q^{\mathrm{T}}$
 - where Q is an orthogonal matrix composed of eigenvectors of A
- Decomposition is not unique when two eigenvalues are the same
- By convention order entries of Λ in descending order:
 - Under this convention, eigendecomposition is unique if all eigenvalues are unique

What does eigendecomposition tell us?

- Tells us useful facts about the matrix:
 - 1. Matrix is singular if & only if any eigenvalue is zero
 - 2. Useful to optimize quadratic expressions of form

 $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$ subject to $||\mathbf{x}||_2 = 1$

Whenever \boldsymbol{x} is equal to an eigenvector, f is equal to the corresponding eigenvalue

Maximum value of f is max eigen value, minimum value is min eigen value

Example of such a quadratic form appears in multivariate Gaussian

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right\}$$

Positive Definite Matrix

- A matrix whose eigenvalues are all positive is called *positive definite*
 - Positive or zero is called positive semidefinite
- If eigen values are all negative it is *negative definite*
 - Positive definite matrices guarantee that $x^{T}Ax \ge 0$

Singular Value Decomposition (SVD)

- Eigendecomposition has form: A = Vdiag(λ) V⁻¹
 If A is not square, eigendecomposition is undefined
- SVD is a decomposition of the form $A = UDV^T$
- SVD is more general than eigendecomposition
 - Used with any matrix rather than symmetric ones
 - Every real matrix has a SVD
 - Same is not true of eigen decomposition

SVD Definition

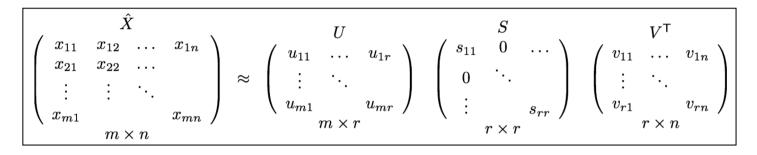
- Write A as a product of 3 matrices: $A = UDV^{T}$
 - If A is $m \times n$, then U is $m \times m$, D is $m \times n$, V is $n \times n$
- Each of these matrices have a special structure
 - U and V are orthogonal matrices
 - *D* is a diagonal matrix not necessarily square
 - Elements of Diagonal of *D* are called *singular values of A*
 - Columns of *U* are called *left singular vectors*
 - Columns of *V* are called *right singular vectors*
- SVD interpreted in terms of eigendecomposition
 - Left singular vectors of A are eigenvectors of AA^{T}
 - Right singular vectors of A are eigenvectors of $A^{T}A$
 - Nonzero singular values of A are square roots of eigen values of A^TA. Same is true of AA^T

Use of SVD in ML

- 1. SVD is used in generalizing matrix inversion
- Moore-Penrose inverse (discussed next)
- 2. Used in Recommendation systems
- Collaborative filtering (CF)
 - Method to predict a rating for a *user-item* pair based on the history of ratings given by the user and given to the item
 - Most CF algorithms are based on *user-item* rating matrix where each row represents a user, each column an item
 - Entries of this matrix are ratings given by users to items
 - SVD reduces no.of features of a data set by reducing space dimensions from N to K where K < N

Machine Learning

SVD in Collaborative Filtering



- *X* is the utility matrix
 - $-X_{ij}$ denotes how user *i* likes item *j*
 - CF fills blank (cell) in utility matrix that has no entry
- Scalability and sparsity is handled using SVD
 - SVD decreases dimension of utility matrix by extracting its latent factors
 - Map each user and item into latent space of dimension \boldsymbol{r}

Moore-Penrose Pseudoinverse

- Most useful feature of SVD is that it can be used to generalize matrix inversion to nonsquare matrices
- Practical algorithms for computing the pseudoinverse of *A* are based on SVD

 $A^+ \!=\! V D^+ U^T$

- where U, D, V are the SVD of A

 Pseudoinverse D⁺ of D is obtained by taking the reciprocal of its nonzero elements when taking transpose of resulting matrix

Trace of a Matrix

• Trace operator gives the sum of the elements along the diagonal

$$Tr(A) = \sum_{i,i} A_{i,i}$$

Frobenius norm of a matrix can be represented as

$$\left\| \left| A \right| \right|_F = \left(Tr(A) \right)^{\frac{1}{2}}$$

Determinant of a Matrix

- Determinant of a square matrix det(A) is a mapping to a scalar
- It is equal to the product of all eigenvalues of the matrix
- Measures how much multiplication by the matrix expands or contracts space

Example: PCA

- A simple ML algorithm is *Principal Components Analysis*
- It can be derived using only knowledge of basic linear algebra

PCA Problem Statement

- Given a collection of m points $\{x^{(1)}, ..., x^{(m)}\}$ in R^n represent them in a lower dimension.
 - For each point $\boldsymbol{x}^{(i)}$ find a code vector $\boldsymbol{c}^{(i)}$ in R^l
 - If *l* is smaller than *n* it will take less memory to store the points
 - This is lossy compression
 - Find encoding function f(x) = c and a decoding function $x \approx g(f(x))$

PCA using Matrix multiplication

- One choice of decoding function is to use matrix multiplication: g(c) = Dc where $D \in \mathbb{R}^{n \times l}$ - D is a matrix with *l* columns
- To keep encoding easy, we require columns of *D* to be orthogonal to each other
 - To constrain solutions we require columns of *D* to have unit norm
- We need to find optimal code c^* given D
- Then we need optimal D

Finding optimal code given *D*

- To generate optimal code point c^* given input x, minimize the distance between input point x and its reconstruction $g(c^*)$ $c^* = \arg \min ||x - g(c)||_2$
 - Using squared L^2 instead of L^2 , function being minimized is equivalent to

$$(\boldsymbol{x}-g(\boldsymbol{c}))^{\mathrm{T}}(\boldsymbol{x}-g(\boldsymbol{c}))$$

• Using g(c) = Dc optimal code can be shown to be equivalent to $c^* = \operatorname{argmin} - 2x^T Dc + c^T c$

Optimal Encoding for PCA

Using vector calculus

 $\nabla_{c}(-2\boldsymbol{x}^{T}\boldsymbol{D}\boldsymbol{c}+\boldsymbol{c}^{T}\boldsymbol{c}) = \boldsymbol{\theta}$ $-2\boldsymbol{D}^{T}\boldsymbol{x}+2\boldsymbol{c}=\boldsymbol{\theta}$ $\boldsymbol{c}=\boldsymbol{D}^{T}\boldsymbol{x}$

- Thus we can encode *x* using a matrix-vector operation
 - To encode we use $f(\mathbf{x}) = D^T \mathbf{x}$
 - For PCA reconstruction, since g(c) = Dc we use $r(x) = g(f(x)) = DD^T x$
 - Next we need to choose the encoding matrix D

Method for finding optimal D

- Revisit idea of minimizing L² distance between inputs and reconstructions
 - But cannot consider points in isolation
 - So minimize error over all points: Frobenius norm

$$D^* = \operatorname{argmin}_{D} \left(\sum_{i,j} \left(\mathbf{x}_j^{(i)} - r\left(\mathbf{x}^{(i)} \right)_j \right)^2 \right)^{\frac{1}{2}}$$

- subject to $D^T D = I_l$
- Use design matrix X, $X \in \mathbb{R}^{m \times n}$

Given by stacking all vectors describing the points

- To derive algorithm for finding D^* start by considering the case l = 1
 - In this case *D* is just a single vector *d*

Final Solution to PCA

- For *l* =1, the optimization problem is solved using eigendecomposition
 - Specifically the optimal d is given by the eigenvector of $X^T X$ corresponding to the largest eigenvalue
- More generally, matrix *D* is given by the *l* eigenvectors of *X* corresponding to the largest eigenvalues (Proof by induction)