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What is linear algebra? 
•  Linear algebra is the branch of mathematics 

concerning linear equations such as  
  a1x1+…..+anxn=b 

–  In vector notation we say aTx=b 
– Called a linear transformation of x 

•  Linear algebra is fundamental to geometry, for 
defining objects such as lines, planes, rotations 
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Linear equation a1x1+…..+anxn=b  
defines a plane in (x1,..,xn) space 
Straight lines define common solutions 
to equations 
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Why do we need to know it? 
•  Linear Algebra is used throughout engineering 

– Because it is based on continuous math rather than 
discrete math 

•  Computer scientists have little experience with it 

•  Essential for understanding ML algorithms 
– E.g., We convert input vectors (x1,..,xn) into outputs 

by a series of linear transformations 
•  Here we discuss: 

– Concepts of linear algebra needed for ML 
– Omit other aspects of linear algebra 

3 
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Linear Algebra Topics 

– Scalars, Vectors, Matrices and Tensors 
– Multiplying Matrices and Vectors 
–  Identity and Inverse Matrices 
– Linear Dependence and Span 
– Norms 
– Special kinds of matrices and vectors 
– Eigendecomposition 
– Singular value decomposition 
– The Moore Penrose pseudoinverse 
– The trace operator 
– The determinant 
– Ex: principal components analysis 4 
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Scalar 
•  Single number 

–  In contrast to other objects in linear algebra, 
which are usually arrays of numbers 

•  Represented in lower-case italic x 
– They can be real-valued or be integers 

•  E.g., let          be the slope of the line 
– Defining a real-valued scalar 

•  E.g., let          be the number of units 
– Defining a natural number scalar 
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  x ∈!

  n∈!
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Vector 

•  An array of numbers arranged in order 
•  Each no. identified by an index 
•  Written in lower-case bold such as x 

–  its elements are in italics lower case, subscripted 

•  If each element is in R then x is in Rn 

•  We can think of vectors as points in space 
– Each element gives coordinate along an axis 
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Matrices 

•  2-D array of numbers 
– So each element identified by two indices 

•  Denoted by bold typeface A 
– Elements indicated by name in italic but not bold  

• A1,1 is the top left entry and Am,nis the bottom right entry 
•  We can identify nos in vertical column j by writing : for the 

horizontal coordinate 
•  E.g., 

• Ai: is ith row of A, A:j is jth column of A 

•  If A has shape of height m and width n with 
real-values then  7 
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Tensor 

•  Sometimes need an array with more than two 
axes 
– E.g., an RGB color image has three axes 

•  A tensor is an array of numbers arranged on a 
regular grid with variable number of axes  
– See figure next 

•  Denote a tensor with this bold typeface: A 
•  Element (i,j,k) of tensor denoted by Ai,j,k 

8 
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Shapes of Tensors 

9 
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Transpose of a Matrix 

•  An important operation on matrices 
•  The transpose of a matrix A is denoted as AT 

•  Defined as 
   (AT)i,j=Aj,i 

– The mirror image across a diagonal line 
•  Called the main diagonal , running down to the right 

starting from upper left corner 
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Vectors as special case of matrix 

•  Vectors are matrices with a single column 
•  Often written in-line using transpose 

   x = [x1,..,xn]T 

•  A scalar is a matrix with one element  
  a=aT 
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Matrix Addition 
•  We can add matrices to each other if they have 

the same shape, by adding corresponding 
elements 
–  If A and B have same shape (height m, width n) 

•  A scalar can be added to a matrix or multiplied 
by a scalar 

•  Less conventional notation used in ML: 
– Vector added to matrix 

•  Called broadcasting since vector b added to each row of A 
12 
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Multiplying Matrices 

•  For product C=AB to be defined, A has to have 
the same no. of columns as the no. of rows of B 
–  If A is of shape mxn and B is of shape nxp then 

matrix product C is of shape mxp 

– Note that the standard product of two matrices is 
not just the product of two individual elements 

•  Such a product does exist and is called the element-wise 
product or the Hadamard product A¤B 

13 

	 
C =AB⇒C
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Multiplying Vectors 

•  Dot product between two vectors x and y of 
same dimensionality is the matrix product xTy  

•  We can think of matrix product C=AB as 
computing Cij the dot product of row i of A and 
column j of B 

14 
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Matrix Product Properties 

•  Distributivity over addition: A(B+C)=AB+AC 
•  Associativity: A(BC)=(AB)C 
•  Not commutative: AB=BA is not always true 
•  Dot product between vectors is commutative: 

xTy=yTx 
•  Transpose of a matrix product has a simple 

form: (AB)T=BTAT 

15 
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Example flow of tensors in ML 
A linear classifier  y= WxT+b 

A linear classifier with bias eliminated  y= WxT 

Vector x is converted 
into vector y by 
multiplying x by a matrix W 



Machine Learning                                                                                             Srihari 

Linear Transformation 
• Ax=b 

– where            and 
– More explicitly 

 
•  Sometimes we wish to solve for the unknowns 

x ={x1,..,xn} when A and b provide constraints 
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Identity and Inverse Matrices  

•  Matrix inversion is a powerful tool to analytically 
solve Ax=b 

•  Needs concept of Identity matrix 
•  Identity matrix does not change value of vector 

when we multiply the vector by identity matrix 
– Denote identity matrix that preserves n-dimensional 

vectors as In 

– Formally                      and 
– Example of I3 

18 
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Matrix Inverse 

•  Inverse of square matrix A defined as 
•  We can now solve Ax=b as follows: 

 
•  This depends on being able to find A-1 

•  If A-1 exists there are several methods for 
finding it 
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		A
−1A= In

		 	

Ax = b
A−1Ax = A−1b
Inx = A−1b

x = A−1b
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Solving Simultaneous equations 

• Ax = b 
where A is (M+1) x (M+1) 
x is (M+1) x 1: set of weights to be determined 
b is N x 1 

20 
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Equations in Linear Regression 

•  Instead of Ax=b 
•  We have 

– where Φ is m x n design matrix of m features for n 
samples xj, j=1,..n 

– w is weight vector of m values 
–  t is target values of sample, t=[t1,..tn] 
– We need weight w to be used with m features to 

determine output 

21 

 Φw = t

		  
y(x,w)= w
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∑
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Closed-form solutions 

•  Two closed-form solutions 
1. Matrix inversion x=A-1b 
2. Gaussian elimination 

22 
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Linear Equations: Closed-Form Solutions 

1. Matrix Formulation: Ax=b 
Solution: x=A-1b 

2. Gaussian Elimination  
followed by back-substitution 

L2-3L1àL2 L3-2L1àL3 -L2/4àL2 
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Disadvantage of closed-form  solutions 
•  If A-1 exists, the same A-1 can be used for any 

given b 
– But A-1 cannot be represented with sufficient 

precision 
–  It is not used in practice 

•  Gaussian elimination also has disadvantages 
– numerical instability (division by small no.) 
– O(n3) for n x n matrix 

•  Software solutions use value of b in finding x 
– E.g., difference (derivative) between b and output is 

used iteratively 24 
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How many solutions for Ax=b exist? 
•  System of equations with 

–   n variables and m equations is:  
•  Solution is x=A-1b 
•  In order for A-1 to exist  Ax=b must have 

exactly one solution for every value of b 
–  It is also possible for the system of equations to 

have no solutions or an infinite no. of solutions for 
some values of b 

•  It is not possible to have more than one but fewer than 
infinitely many solutions 

–  If x and y are solutions then z=α x + (1-α) y   is a 
solution for any real α 25 

		 

A11x1 + A12x2 +....+ A1nxn = b1

A21x1 + A22x2 +....+ A2nxn = b2

Am1x1 + Am2x2 +....+ Amnxn = bm
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Span of a set of vectors 
•  Span of a set of vectors: set of points obtained 

by a linear combination of those vectors 
– A linear combination of vectors {v(1),.., v(n)} with 

coefficients ci is 
– System of equations is Ax=b 

•  A column of A, i.e., A:i specifies travel in direction i 
•  How much we need to travel is given by xi  

•  This is a linear combination of vectors 
– Thus determining whether Ax=b has a solution is 

equivalent to determining whether b is in the span of 
columns of A 

•  This span is referred to as column space or range of A 

  
Ax= x

i
i
∑ A

:, i

	   
ci

i
∑ v(i)
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Conditions for a solution to Ax=b 
•  Matrix must be square, i.e., m=n and all 

columns must be linearly independent 
– Necessary condition is  

•  For a solution to exist when                we require the 
column space be all of 

– Sufficient Condition 
•  If columns are linear combinations of other columns, 

column space is less than 
– Columns are linearly dependent or matrix is singular 

•  For column space to encompass         at least one set 
of m linearly independent columns 

•  For non-square and  singular matrices 
– Methods other than matrix inversion are used 

	 	A∈!m×n

	 !m

 n≥m

	 !m

	 !m
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Use of a Vector in Regression 

•  A design matrix 
– N samples, D features 

•  Feature vector has three dimensions 

•  This is a regression problem 
28 
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Norms 

•  Used for measuring the size of a vector 
•  Norms map vectors to non-negative values 
•  Norm of vector x = [x1,..,xn]T is distance from 

origin to x 
–  It is any function f  that satisfies: 

 

29 

	  

f x( )= 0⇒x= 0
f(x+y)≤ f x( )+ f y( )     Triangle	Inequality
∀α ∈R   f αx( )= α f x( )
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•  Definition: 

– L2 Norm 
•  Called Euclidean norm 

–  Simply the Euclidean distance 
    between the origin and the point x 
– written simply as ||x|| 
–  Squared Euclidean norm is same as xTx 

– L1 Norm 
•  Useful when 0 and non-zero have to be distinguished  

– Note that L2 increases slowly near origin, e.g., 0.12=0.01) 

– L∞ Norm 

•  Called max norm 

LP Norm 

30 
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•  Linear Regression 
x: a vector, w: weight vector 

 
 With nonlinear basis functions ϕj 

 

•  Loss Function 
 
 

Second term is a weighted norm 
called a regularizer (to prevent overfitting) 

Use of norm in Regression 

31 
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•  Norm is the length of a vector 

•  We can use it to draw a unit circle from origin 
– Different P values yield different shapes  

•  Euclidean norm yields a circle 

 
•  Distance between two vectors (v,w) 

– dist(v,w)=||v-w|| 
               = 

Distance to origin would just be sqrt of sum of squares 

LP Norm and Distance 

32 
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Size of a Matrix: Frobenius Norm 

•  Similar to L2 norm 
 

•  Frobenius in ML 
– Layers of neural network 

involve matrix multiplication 
– Regularization:  

•  minimize Frobenius of weight 
matrices ||W(i)|| over L layers 

33 

	 
A

F
= Ai,j
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i,j
∑
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1
2

I1×(I+1) × V(I+1)×J=netJ 

hj=f(netj)     f(x)=1/(1+e-x) 
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A =
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0 2 1
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⎢
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⎥
  A = 4 + 1 + 25 + ..+ 1 = 46
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Angle between Vectors 
•  Dot product of two vectors can be written in 

terms of their L2 norms and angle θ between 
them 

 
•  Cosine between two vectors is a measure of 

their similarity 

34 

		   x
Ty⇒||x ||
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||y ||
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cos θ
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Special kind of Matrix: Diagonal 

•  Diagonal Matrix has mostly zeros, with non-
zero entries only in diagonal 
– E.g., identity matrix, where all diagonal entries are 1 
 
– E.g., covariance matrix with independent features 

If Cov(X,Y)=0 then E(XY)=E(X)E(Y)      
N(x | µ,Σ) =

1
(2π)D/2

1
|Σ |1/2

exp −
1
2
(x−µ)TΣ−1(x−µ)

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
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Efficiency of Diagonal Matrix 
•  diag (v) denotes a square diagonal matrix with 

diagonal elements given by entries of vector  v 
•  Multiplying vector x by a diagonal matrix is 

efficient 
– To compute diag(v)x  we only need to scale each xi 

by vi 

•  Inverting a square diagonal matrix is efficient 
–  Inverse exists iff every diagonal entry is nonzero, in 

which case diag (v)-1=diag ([1/v1,..,1/vn]T) 

    diag(v)x=v⊙x
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Special kind of Matrix: Symmetric 
•  A symmetric matrix equals its transpose: A=AT 

– E.g., a distance matrix is symmetric with Aij=Aji 

– E.g., covariance matrices are symmetric 
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Special Kinds of Vectors 

•  Unit Vector 
– A vector with unit norm 

•  Orthogonal Vectors 
– A vector x and a vector y are 

orthogonal to each other if xTy=0 
•  If vectors have nonzero norm, vectors at 

90 degrees to each other 
– Orthonormal Vectors 

•  Vectors are orthogonal & have unit norm 
•  Orthogonal Matrix 

–  A square matrix whose rows are mutually 
orthonormal:  ATA=AAT=I 

–    A-1=AT 

	 x 2
=1

Orthogonal matrices are of 
interest because their inverse is 
very cheap to compute 
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Matrix decomposition 

•  Matrices can be decomposed into factors to 
learn universal properties, just like integers: 
– Properties not discernible from their representation 
1. Decomposition of integer into prime factors  

•  From 12=2×2×3 we can discern that 
–   12 is not divisible by 5 or  
–  any multiple of 12 is divisible by 3 
–  But representations of 12 in binary or decimal are different 

2. Decomposition of Matrix A as A=Vdiag(λ)V-1 
•  where V is formed of eigenvectors and λ are eigenvalues, 

e.g, 

   
A = 2 1

1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

has eigenvalues λ=1 and λ=3 and eigenvectors V: 
    
v
λ=1

= 1
−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ,vλ=3

= 1
1

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥
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Eigenvector 
•  An eigenvector of a square matrix 

A is a non-zero vector v such that 
multiplication by A only changes 
the scale of v 

  Av=λv 
– The scalar λ is known as eigenvalue 

•  If v is an eigenvector of A, so is 
any rescaled vector sv. Moreover 
sv still has the same eigen value. 
Thus look for a unit eigenvector 

40 

Wikipedia 
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Eigenvalue and Characteristic Polynomial 
•  Consider Av=w 
•  If v and w are scalar multiples, i.e., if Av=λv 

•  then v is an eigenvector of the linear transformation A 
and the scale factor λ is the eigenvalue corresponding 
to the eigen vector  

•  This is the eigenvalue equation of matrix A 
– Stated equivalently as   (A-λI)v=0    
– This has a non-zero solution if  |A-λI|=0           as 

•  The polynomial of degree n can be factored as 
  |A-λI| = (λ1-λ)(λ2-λ)…(λn-λ)  
•  The λ1, λ2…λn  are roots of the polynomial and are 

eigenvalues of A 

  

A=

A
1,1

L A
1,n

M M M
A

n,1
L A
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⎢
⎢
⎢
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⎥
⎥

         v=
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⎢
⎢
⎢
⎢
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⎥

         w=

w
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M
w

n

⎡

⎣
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⎢
⎢
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⎥
⎥
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Example of Eigenvalue/Eigenvector 
•  Consider the matrix 

•  Taking determinant of (A-λI), the char poly is 
 

•  It has roots λ=1 and λ=3 which are the two 
eigenvalues of A 

•  The eigenvectors are found by solving for v in 
Av=λv, which are 
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A = 2 1

1 2
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⎣
⎢
⎢
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⎦
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⎥

    
|A−λI |= 2−λ 1

1 2−λ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ = 3− 4λ+λ2

    
v
λ=1

= 1
−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ,vλ=3

= 1
1

⎡

⎣
⎢
⎢
⎤

⎦
⎥
⎥
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Eigendecomposition 

•  Suppose that matrix A has n linearly 
independent eigenvectors {v(1),..,v(n)} with 
eigenvalues {λ1,..,λn} 

•  Concatenate eigenvectors to form matrix V 
•  Concatenate eigenvalues to form vector 
λ=[λ1,..,λn] 

•  Eigendecomposition of A is given by 
   A=Vdiag(λ)V-1 

43 
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Decomposition of Symmetric Matrix 
•  Every real symmetric matrix A can be 

decomposed into real-valued eigenvectors and 
eigenvalues 

   A=QΛQT 

where Q is an orthogonal matrix composed of 
eigenvectors of A: {v(1),..,v(n)} 

orthogonal matrix: components are orthogonal or v(i)Tv(j)=0 

Λ is a diagonal matrix of eigenvalues {λ1,..,λn} 
•  We can think of A as scaling space by λi in 

direction v(i) 

– See figure on next slide 44 
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Effect of Eigenvectors and Eigenvalues 

•  Example of 2×2 matrix 
•  Matrix A with two orthonormal eigenvectors 

–  v(1) with eigenvalue λ1, v(2) with eigenvalue λ2 

45 

Plot of unit vectors   
(circle) 

	  u∈!2 Plot of vectors Au   
(ellipse) 

with two variables x1 and x2 



Machine Learning                                                                                             Srihari 

Eigendecomposition is not unique 

•  Eigendecomposition is A=QΛQT 

– where Q is an orthogonal matrix composed of 
eigenvectors of A 

•  Decomposition is not unique when two 
eigenvalues are the same 

•  By convention order entries of Λ in descending 
order: 
– Under this convention, eigendecomposition is 

unique if all eigenvalues are unique  
46 
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What does eigendecomposition tell us? 

•  Tells us useful facts about the matrix: 
1.  Matrix is singular if & only if any eigenvalue is zero 
2.    Useful to optimize quadratic expressions of form 

   f(x)=xTAx subject to ||x||2=1 
Whenever x is equal to an eigenvector, f is equal to the 
corresponding eigenvalue 
Maximum value  of f  is max eigen value, minimum value is 
min eigen value 
Example of such a quadratic form appears in multivariate 
Gaussian 

47 
     
N(x | µ,Σ) =

1
(2π)D/2

1
|Σ |1/2

exp −
1
2
(x−µ)TΣ−1(x−µ)

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
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Positive Definite Matrix 

•  A matrix whose eigenvalues are all positive is 
called positive definite 
– Positive or zero is called positive semidefinite 

•  If eigen values are all negative it is negative 
definite 
– Positive definite matrices guarantee that xTAx ≥ 0 
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Singular Value Decomposition (SVD) 

•  Eigendecomposition has form:  A=Vdiag(λ)V-1 

–  If A is not square,  eigendecomposition is undefined 
•  SVD is a decomposition of the form A=UDVT 
•  SVD is more general than eigendecomposition 

– Used with any matrix rather than symmetric ones 
– Every real matrix has a SVD  

•  Same is not true of eigen decomposition  
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SVD Definition 

•  Write A as a product of 3 matrices:  A=UDVT 

–  If A is m×n, then U is m×m, D is m×n,  V is n×n 

•  Each of these matrices have a special structure 
• U and V are orthogonal matrices 
• D is a diagonal matrix not necessarily square 

–  Elements of Diagonal of D are called singular values of A 
– Columns of U are called left singular vectors 
– Columns of V are called right singular vectors 

•  SVD interpreted in terms of eigendecomposition 
•  Left singular vectors of A are eigenvectors of AAT  
•  Right singular vectors of A are eigenvectors of ATA 
•  Nonzero singular values of A are square roots of eigen 

values of ATA. Same is true of AAT 
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Use of SVD in ML 

1.  SVD is used in generalizing matrix inversion 
–  Moore-Penrose inverse (discussed next) 
2.  Used in Recommendation systems 
–  Collaborative filtering (CF)  

•  Method to predict a rating for a user-item pair based on the 
history of ratings given by the user and given to the item 

•  Most CF algorithms are based on user-item rating matrix 
where each row represents a user, each column an item 
–  Entries of this matrix are ratings given by users to items 

•  SVD reduces no.of features of a data set by reducing space 
dimensions from N to K where K < N 
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SVD in Collaborative Filtering 

• X is the utility matrix 
– Xij denotes how user i likes item j 
– CF fills blank (cell) in utility matrix that has no entry 

•  Scalability and sparsity is handled using SVD 
– SVD decreases dimension of utility matrix by 

extracting its latent factors 
•  Map each user and item into latent space of dimension r 
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Moore-Penrose Pseudoinverse 

•  Most useful feature of SVD is that it can be 
used to generalize matrix inversion to non-
square matrices 

•  Practical algorithms for computing the 
pseudoinverse of A are based on SVD 

   A+=VD+UT 

– where U,D,V are the SVD of A 
•  Pseudoinverse D+ of D is obtained by taking the 

reciprocal of its nonzero elements when taking transpose 
of resulting matrix 
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Trace of a Matrix 

•  Trace operator gives the sum of the elements 
along the diagonal 

•  Frobenius norm of a matrix can be represented 
as 
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Determinant of a Matrix 

•  Determinant of a square matrix det(A) is a 
mapping to a scalar 

•  It is equal to the product of all eigenvalues of 
the matrix 

•  Measures how much multiplication by the 
matrix expands or contracts space 

55 



Machine Learning                                                                                             Srihari 

Example: PCA 
•  A simple ML algorithm is Principal Components 

Analysis 
•  It can be derived using only knowledge of basic 

linear algebra 
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PCA Problem Statement 
•  Given a collection of m points {x(1),..,x(m)} in 

Rn represent them in a lower dimension. 
– For each point x(i) find a code vector c(i) in Rl 
–  If l is smaller than n it will take less memory to 

store the points 
– This is lossy compression 
– Find encoding function f (x) = c and a decoding 

function x  ≈ g ( f (x) ) 
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PCA using Matrix multiplication 

•  One choice of decoding function is to use 
matrix multiplication: g(c) =Dc  where 
– D is a matrix with l columns 

•  To keep encoding easy, we require columns of 
D to be orthogonal to each other  
– To constrain solutions we require columns  of D to 

have unit norm 
•  We need to find optimal code c* given D 
•  Then we need optimal D 
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Finding optimal code given D 

•  To generate optimal code point c* given input 
x, minimize the distance between input point x 
and its reconstruction g(c*) 

 
– Using squared L2 instead of L2, function being 

minimized is equivalent to 

•  Using g(c)=Dc optimal code can be shown to 
be equivalent to 
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c* = argmin

c
x− g(c)
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		  (x− g(c))T(x− g(c))

	  
c* = argmin

c
− 2xT Dc+cT c
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Optimal Encoding for PCA 

•  Using vector calculus 
 
•  Thus we can encode x using a matrix-vector 

operation 
– To encode we use f(x)=DTx 
– For PCA reconstruction, since g(c)=Dc we use 

r(x)=g(f(x))=DDTx 
– Next we need to choose the encoding matrix D 
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∇c(−2xT Dc+cT c)= 0

−2DTx+2c = 0
c = DTx
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Method for finding optimal D 
•  Revisit idea of minimizing L2 distance between 

inputs and reconstructions 
– But cannot consider points in isolation 
–   So minimize error over all points: Frobenius norm 

 
•  subject to DTD=Il 

•  Use design matrix X,  
– Given by stacking all vectors describing the points 

•  To derive algorithm for finding D* start by 
considering the case l =1 
–  In this case D is just a single vector d 
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Final Solution to PCA 

•  For l =1, the optimization problem is solved 
using eigendecomposition 
– Specifically the optimal d is given by the 

eigenvector of  XTX corresponding to the largest 
eigenvalue 

•  More generally, matrix D is given by the l 
eigenvectors of X corresponding to the largest 
eigenvalues (Proof by induction) 
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