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Preface

This book is an introductory textbook in undergraduate probability. It has a mission: to spell
out the motivation, intuition, and implication of the probabilistic tools we use in science
and engineering. From over half a decade of teaching the course, I have distilled what I
believe to be the core of probabilistic methods. I put the book in the context of data science
to emphasize the inseparability between data (computing) and probability (theory) in our
time.

Probability is one of the most interesting subjects in electrical engineering and com-
puter science. It bridges our favorite engineering principles to the practical reality, a world
that is full of uncertainty. However, because probability is such a mature subject, the under-
graduate textbooks alone might fill several rows of shelves in a library. When the literature
is so rich, the challenge becomes how one can pierce through to the insight while diving into
the details. For example, many of you have used a normal random variable before, but have
you ever wondered where the “bell shape” comes from? Every probability class will teach
you about flipping a coin, but how can “flipping a coin” ever be useful in machine learning
today? Data scientists use the Poisson random variables to model the internet traffic, but
where does the gorgeous Poisson equation come from? This book is designed to fill these
gaps with knowledge that is essential to all data science students.

This leads to the three goals of the book. (i) Motivation: In the ocean of mathematical
definitions, theorems, and equations, why should we spend our time on this particular topic
but not another? (ii) Intuition: When going through the derivations, is there a geometric
interpretation or physics beyond those equations? (iii) Implication: After we have learned a
topic, what new problems can we solve?

The book’s intended audience is undergraduate juniors/seniors and first-year gradu-
ate students majoring in electrical engineering and computer science. The prerequisites are
standard undergraduate linear algebra and calculus, except for the section about charac-
teristic functions, where Fourier transforms are needed. An undergraduate course in signals
and systems would suffice, even taken concurrently while studying this book.

The length of the book is suitable for a two-semester course. Instructors are encouraged
to use the set of chapters that best fits their classes. For example, a basic probability course
can use Chapters 1-5 as its backbone. Chapter 6 on sample statistics is suitable for students
who wish to gain theoretical insights into probabilistic convergence. Chapter 7 on regression
and Chapter 8 on estimation best suit students who want to pursue machine learning and
signal processing. Chapter 9 discusses confidence intervals and hypothesis testing, which are
critical to modern data analysis. Chapter 10 introduces random processes. My approach for
random processes is more tailored to information processing and communication systems,
which are usually more relevant to electrical engineering students.

Additional teaching resources can be found on the book’s website, where you can
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find lecture videos and homework videos. Throughout the book you will see many “practice
exercises”, which are easy problems with worked-out solutions. They can be skipped without
loss to the flow of the book.
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Chapter 1

Mathematical Background

“Data science” has different meanings to different people. If you ask a biologist, data science
could mean analyzing DNA sequences. If you ask a banker, data science could mean pre-
dicting the stock market. If you ask a software engineer, data science could mean programs
and data structures; if you ask a machine learning scientist, data science could mean models
and algorithms. However, one thing that is common in all these disciplines is the concept of
uncertainty. We choose to learn from data because we believe that the latent information
is embedded in the data — unprocessed, contains noise, and could have missing entries. If
there is no randomness, all data scientists can close their business because there is simply
no problem to solve. However, the moment we see randomness, our business comes back.
Therefore, data science is the subject of making decisions in uncertainty.

The mathematics of analyzing uncertainty is probability. It is the tool to help us model,
analyze, and predict random events. Probability can be studied in as many ways as you can
think of. You can take a rigorous course in probability theory, or a “probability for dummies”
on the internet, or a typical undergraduate probability course offered by your school. This
book is different from all these. Our goal is to tell you how things work in the context of data
science. For example, why do we need those three axioms of probabilities and not others?
Where does the “bell shape” Gaussian random variable come from? How many samples do
we need to construct a reliable histogram? These questions are at the core of data science,
and they deserve close attention rather than sweeping them under the rug.

To help you get used to the pace and style of this book, in this chapter, we review some
of the very familiar topics in undergraduate algebra and calculus. These topics are meant
to warm up your mathematics background so that you can follow the subsequent chapters.
Specifically, in this chapter, we cover several topics. First, in Section 1.1 we discuss infinite
series, something that will be used frequently when we evaluate the expectation and variance
of random variables in Chapter 3. In Section 1.2 we review the Taylor approximation,
which will be helpful when we discuss continuous random variables. Section 1.3 discusses
integration and reviews several tricks we can use to make integration easy. Section 1.4
deals with linear algebra, aka matrices and vectors, which are fundamental to modern data
analysis. Finally, Section 1.5 discusses permutation and combination, two basic techniques
to count events.
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CHAPTER 1. MATHEMATICAL BACKGROUND

1.1 Infinite Series

Imagine that you have a fair coin. If you get a tail, you flip it again. You do this repeatedly
until you finally get a head. What is the probability that you need to flip the coin three
times to get one head?

This is a warm-up exercise. Since the coin is fair, the probability of obtaining a head
is 1

2 . The probability of getting a tail followed by a head is 1
2 ×

1
2 = 1

4 . Similarly, the
probability of getting two tails and then a head is 1

2 ×
1
2 ×

1
2 = 1

8 . If you follow this logic, you
can write down the probabilities for all other cases. For your convenience, we have drawn the
first few in Figure 1.1. As you have probably noticed, the probabilities follow the pattern
{ 12 ,

1
4 ,

1
8 , . . .}.

Figure 1.1: Suppose you flip a coin until you see a head. This requires you to have N − 1 tails followed
by a head. The probability of this sequence of events are 1

2
, 1

4
, 1

8
, . . . , which forms an infinite sequence.

We can also summarize these probabilities using a familiar plot called the histogram
as shown in Figure 1.2. The histogram for this problem has a special pattern, that every
value is one order higher than the preceding one, and the sequence is infinitely long.

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

Figure 1.2: The histogram of flipping a coin until we see a head. The x-axis is the number of coin flips,
and the y-axis is the probability.

Let us ask something harder: On average, if you want to be 90% sure that you will
get a head, what is the minimum number of attempts you need to try? Five attempts?
Ten attempts? Indeed, if you try ten attempts, you will very likely accomplish your goal.
However, this would seem to be overkill. If you try five attempts, then it becomes unclear
whether you will be 90% sure.

2



1.1. INFINITE SERIES

This problem can be answered by analyzing the sequence of probabilities. If we make
two attempts, then the probability of getting a head is the sum of the probabilities for one
attempt and that of two attempts:

P[success after 1 attempt] =
1

2
= 0.5

P[success after 2 attempts] =
1

2
+

1

4
= 0.75

Therefore, if you make 3 attempts or 4 attempts, you get the following probabilities:

P[success after 3 attempts] =
1

2
+

1

4
+

1

8
= 0.875

P[success after 4 attempts] =
1

2
+

1

4
+

1

8
+

1

16
= 0.9375.

So if we try four attempts, we will have a 93.75% probability of getting a head. Thus, four
attempts is the answer.

The MATLAB / Python codes we used to generate Figure 1.2 are shown below.

% MATLAB code to generate a geometric sequence

p = 1/2;

n = 1:10;

X = p.^n;

bar(n,X,’FaceColor’,[0.8, 0.2,0.2]);

# Python code to generate a geometric sequence

import numpy as np

import matplotlib.pyplot as plt

p = 1/2

n = np.arange(0,10)

X = np.power(p,n)

plt.bar(n,X)

This warm-up exercise has perhaps raised some of your interest in the subject. However,
we will not tell you everything now. We will come back to the probability in Chapter 3
when we discuss geometric random variables. In the present section, we want to make sure
you have the basic mathematical tools to calculate quantities, such as a sum of fractional
numbers. For example, what if we want to calculate P[success after 107 attempts]? Is there
a systematic way of performing the calculation?

Remark. You should be aware that the 93.75% only says that the probability of achieving
the goal is high. If you have a bad day, you may still need more than four attempts. Therefore,
when we stated the question, we asked for 90% “on average”. Sometimes you may need
more attempts and sometimes fewer attempts, but on average, you have a 93.75% chance
of succeeding.

1.1.1 Geometric Series

A geometric series is the sum of a finite or an infinite sequence of numbers with a constant
ratio between successive terms. As we have seen in the previous example, a geometric series

3



CHAPTER 1. MATHEMATICAL BACKGROUND

appears naturally in the context of discrete events. In Chapter 3 of this book, we will use
geometric series when calculating the expectation and moments of a random variable.

Definition 1.1. Let 0 < r < 1, a finite geometric sequence of power n is a sequence
of numbers {

1, r, r2, . . . , rn
}
.

An infinite geometric sequence is a sequence of numbers{
1, r, r2, r3, . . .

}
.

Theorem 1.1. The sum of a finite geometric series of power n is

n∑
k=0

rk = 1 + r + r2 + · · ·+ rn =
1− rn+1

1− r
. (1.1)

Proof. We multiply both sides by 1− r. The left hand side becomes(
n∑

k=0

rk

)
(1− r) =

(
1 + r + r2 + · · ·+ rn

)
(1− r)

=
(
1 + r + r2 + · · ·+ rn

)
−
(
r + r2 + r3 + · · ·+ rn+1

)
(a)
= 1− rn+1,

where (a) holds because terms are canceled due to subtractions.
□

A corollary of Equation (1.1) is the sum of an infinite geometric sequence.

Corollary 1.1. Let 0 < r < 1. The sum of an infinite geometric series is

∞∑
k=0

rk = 1 + r + r2 + · · · = 1

1− r
. (1.2)

Proof. We take the limit in Equation (1.1). This yields

∞∑
k=0

rk = lim
n→∞

n∑
k=0

rk = lim
n→∞

1− rn+1

1− r
=

1

1− r
.

□
Remark. Note that the condition 0 < r < 1 is important. If r > 1, then the limit
limn→∞ rn+1 in Equation (1.2) will diverge. The constant r cannot equal to 1, for oth-
erwise the fraction (1− rn+1)/(1− r) is undefined. We are not interested in the case when
r = 0, because the sum is trivially 1:

∑∞
k=0 0

k = 1 + 01 + 02 + · · · = 1.

4



1.1. INFINITE SERIES

Practice Exercise 1.1. Compute the infinite series
∞∑
k=2

1
2k
.

Solution.

∞∑
k=2

1

2k
=

1

4
+

1

8
+ · · ·+

=
1

4

(
1 +

1

2
+

1

4
+ · · ·

)
=

1

4
· 1

1− 1
2

=
1

2
.

Remark. You should not be confused about a geometric series and a harmonic series. A
harmonic series concerns with the sum of {1, 1

2 ,
1
3 ,

1
4 , . . .}. It turns out that

1

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+ · · · =∞.

On the other hand, a squared harmonic series {1, 1
22 ,

1
32 ,

1
42 , . . .} converges:

∞∑
n=1

1

n2
= 1 +

1

22
+

1

32
+

1

42
+ · · · = π2

6
.

The latter result is known as the Basel problem.
We can extend the main theorem by considering more complicated series, for example

the following one.

Corollary 1.2. Let 0 < r < 1. It holds that

∞∑
k=1

krk−1 = 1 + 2r + 3r2 + · · · = 1

(1− r)2
. (1.3)

Proof. Take the derivative on both sides of Equation (1.2). The left hand side becomes

d

dr

∞∑
k=0

rk =
d

dr

(
1 + r + r2 + · · ·

)
= 1 + 2r + 3r2 + · · · =

∞∑
k=1

krk−1

The right hand side becomes
d

dr

(
1

1− r

)
=

1

(1− r)2
.

□

Practice Exercise 1.2. Compute the infinite sum
∑∞

k=1 k ·
1
3k
.

1This result can be found in Tom Apostol, Mathematical Analysis, 2nd Edition, Theorem 8.11.
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Solution. We can use the derivative result:

∞∑
k=1

k · 1
3k

= 1 · 1
3
+ 2 · 1

9
+ 3 · 1

27
+ · · ·

=
1

3
·
(
1 + 2 · 1

3
+ 3 · 1

9
+ · · ·

)
=

1

3
· 1

(1− 1
3 )

2
=

1

3
· 14

9

=
3

4
.

1.1.2 Binomial Series

A geometric series is useful when handling situations such as N − 1 failures followed by
a success. However, we can easily twist the problem by asking: What is the probability
of getting one head out of 3 independent coin tosses? In this case, the probability can be
determined by enumerating all possible cases:

P[1 head in 3 coins] = P[H,T,T] + P[T,H,T] + P[T,T,H]

=

(
1

2
× 1

2
× 1

2

)
+

(
1

2
× 1

2
× 1

2

)
+

(
1

2
× 1

2
× 1

2

)
=

3

8
.

Figure 1.3 illustrates the situation.

Figure 1.3: When flipping three coins independently, the probability of getting exactly one head can
come from three different possibilities.

What lessons have we learned in this example? Notice that you need to enumerate
all possible combinations of one head and two tails to solve this problem. The number is
3 in our example. In general, the number of combinations can be systematically studied
using combinatorics, which we will discuss later in the chapter. However, the number of
combinations motivates us to discuss another background technique known as the binomial
series. The binomial series is instrumental in algebra when handling polynomials such as
(a+ b)2 or (1 + x)3. It provides a valuable formula when computing these powers.

Theorem 1.2 (Binomial theorem). For any real numbers a and b, the binomial series
of power n is

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk, (1.4)

where
(
n
k

)
= n!

k!(n−k)! .

The binomial theorem is valid for any real numbers a and b. The quantity
(
n
k

)
reads

as “n choose k”. Its definition is (
n

k

)
def
=

n!

k!(n− k)!
,

6



1.1. INFINITE SERIES

where n! = n(n − 1)(n − 2) · · · 3 · 2 · 1. We shall discuss the physical meaning of
(
n
k

)
in

Section 1.5. But we can quickly plug in the “n choose k” into the coin flipping example by
letting n = 3 and k = 1:

Number of combinations for 1 head and 2 tails =

(
3

1

)
=

3!

1!2!
= 3.

So you can see why we want you to spend your precious time learning about the binomial
theorem. In MATLAB and Python,

(
n
k

)
can be computed using the commands as follows.

% MATLAB code to compute (N choose K) and K!

n = 10;

k = 2;

nchoosek(n,k)

factorial(k)

# Python code to compute (N choose K) and K!

from scipy.special import comb, factorial

n = 10

k = 2

comb(n, k)

factorial(k)

The binomial theorem makes the most sense when we also learn about the Pascal’s
identity.

Theorem 1.3 (Pascal’s identity). Let n and k be positive integers such that k ≤ n.
Then, (

n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
. (1.5)

Proof. We start by recalling the definition of
(
n
k

)
. This gives us(

n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− (k − 1))!

= n!

(
1

k!(n− k)!
+

1

(k − 1)!(n− k + 1)!

)
,

where we factor out n! to obtain the second equation. Next, we observe that

1

k!(n− k)!
× (n− k + 1)

(n− k + 1)
=

n− k + 1

k!(n− k + 1)!
,

1

(k − 1)!(n− k + 1)!
× k

k
=

k

k!(n− k + 1)!
.

7



CHAPTER 1. MATHEMATICAL BACKGROUND

Substituting into the previous equation we obtain(
n

k

)
+

(
n

k − 1

)
= n!

(
n− k + 1

k!(n− k + 1)!
+

k

k!(n− k + 1)!

)
= n!

(
n+ 1

k!(n− k + 1)!

)
=

(n+ 1)!

k!(n+ 1− k)!

=

(
n+ 1

k

)
.

□
The Pascal triangle is a visualization of the coefficients of (a + b)n as shown in Fig-

ure 1.4. For example, when n = 5, we know that
(
5
3

)
= 10. However, by Pascal’s identity, we

know that
(
5
3

)
=
(
4
2

)
+
(
4
3

)
. So the number 10 is actually obtained by summing the numbers

4 and 6 of the previous row.

Figure 1.4: Pascal triangle for n = 0, . . . , 5. Note that a number in one row is obtained by summing
two numbers directly above it.

Practice Exercise 1.3. Find (1 + x)3.

Solution. Using the binomial theorem, we can show that

(1 + x)3 =

n∑
k=0

(
3

k

)
13−kxk

= 1 + 3x+ 3x2 + x3.

Practice Exercise 1.4. Let 0 < p < 1. Find

n∑
k=0

(
n

k

)
pn−k(1− p)k.

8



1.1. INFINITE SERIES

Solution. By using the binomial theorem, we have

n∑
k=0

(
n

k

)
pn−k(1− p)k = (p+ (1− p))n = 1.

This result will be helpful when evaluating binomial random variables in Chapter 3.

We now prove the binomial theorem. Please feel free to skip the proof if this is your first
time reading the book.

Proof of the binomial theorem. We prove by induction. When n = 1,

(a+ b)1 = a+ b

=

1∑
k=0

a1−kbk.

Therefore, the base case is verified. Assume up to case n. We need to verify case n+ 1.

(a+ b)n+1 = (a+ b)(a+ b)n

= (a+ b)

n∑
k=0

(
n

k

)
an−kbk

=

n∑
k=0

(
n

k

)
an−k+1bk +

n∑
k=0

(
n

k

)
an−kbk+1.

We want to apply the Pascal’s identity to combine the two terms. In order to do so, we note
that the second term in this sum can be rewritten as

n∑
k=0

(
n

k

)
an−kbk+1 =

n∑
k=0

(
n

k

)
an+1−k−1bk+1

=

n+1∑
ℓ=1

(
n

ℓ− 1

)
an+1−ℓbℓ, where ℓ = k + 1

=

n∑
ℓ=1

(
n

ℓ− 1

)
an+1−ℓbℓ + bn+1.

The first term in the sum can be written as
n∑

k=0

(
n

k

)
an−k+1bk =

n∑
ℓ=1

(
n

ℓ

)
an+1−ℓbℓ + an+1, where ℓ = k.

Therefore, the two terms can be combined using Pascal’s identity to yield

(a+ b)n+1 =

n∑
ℓ=1

[(
n

ℓ

)
+

(
n

ℓ− 1

)]
an+1−ℓbℓ + an+1 + bn+1

=

n∑
ℓ=1

(
n+ 1

ℓ

)
an+1−ℓbℓ + an+1 + bn+1 =

n+1∑
ℓ=0

(
n+ 1

ℓ

)
an+1−ℓbℓ.

9



CHAPTER 1. MATHEMATICAL BACKGROUND

Hence, the (n + 1)th case is also verified. By the principle of mathematical induction, we
have completed the proof.

□

The end of the proof. Please join us again.

1.2 Approximation

Consider a function f(x) = log(1+x), for x > 0 as shown in Figure 1.5. This is a nonlinear
function, and we all know that nonlinear functions are not fun to deal with. For example,

if you want to integrate the function
∫ b

a
x log(1 + x) dx, then the logarithm will force you

to do integration by parts. However, in many practical problems, you may not need the full
range of x > 0. Suppose that you are only interested in values x ≪ 1. Then the logarithm
can be approximated, and thus the integral can also be approximated.

0 1 2 3 4 5

0

0.5

1

1.5

2

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

Figure 1.5: The function f(x) = log(1 + x) and the approximation f̂(x) = x.

To see how this is even possible, we show in Figure 1.5 the nonlinear function f(x) =

log(1+x) and an approximation f̂(x) = x. The approximation is carefully chosen such that

for x ≪ 1, the approximation f̂(x) is close to the true function f(x). Therefore, we can
argue that for x≪ 1,

log(1 + x) ≈ x, (1.6)

thereby simplifying the calculation. For example, if you want to integrate x log(1 + x) for

0 < x < 0.1, then the integral can be approximated by
∫ 0.1

0
x log(1 + x) dx ≈

∫ 0.1

0
x2 dx =

x3

3 = 3.33 × 10−4. (The actual integral is 3.21 × 10−4.) In this section we will learn about
the basic approximation techniques. We will use them when we discuss limit theorems in
Chapter 6, as well as various distributions, such as from binomial to Poisson.

10



1.2. APPROXIMATION

1.2.1 Taylor approximation

Given a function f : R → R, it is often useful to analyze its behavior by approximating f
using its local information. Taylor approximation (or Taylor series) is one of the tools for
such a task. We will use the Taylor approximation on many occasions.

Definition 1.2 (Taylor Approximation). Let f : R→ R be a continuous function with
infinite derivatives. Let a ∈ R be a fixed constant. The Taylor approximation of f at
x = a is

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·

=

∞∑
n=0

f (n)(a)

n!
(x− a)n, (1.7)

where f (n) denotes the nth-order derivative of f .

Taylor approximation is a geometry-based approximation. It approximates the function
according to the offset, slope, curvature, and so on. According to Definition 1.2, the Taylor
series has an infinite number of terms. If we use a finite number of terms, we obtain the
nth-order Taylor approximation:

First-Order : f(x) = f(a)︸︷︷︸
offset

+ f ′(a)(x− a)︸ ︷︷ ︸
slope

+O((x− a)2)

Second-Order : f(x) = f(a)︸︷︷︸
offset

+ f ′(a)(x− a)︸ ︷︷ ︸
slope

+
f ′′(a)

2!
(x− a)2︸ ︷︷ ︸

curvature

+O((x− a)3).

Here, the big-O notation O(εk) means any term that has an order at least power k. For
small ε, i.e., ε≪ 1, a high-order term O(εk) ≈ 0 for large k.

Example 1.1. Let f(x) = sinx. Then the Taylor approximation at x = 0 is

f(x) ≈ f(0) + f ′(0)(x− 0) +
f ′′(0)

2!
(x− 0)2 +

f ′′′(0)

3!
(x− 0)3

= sin(0) + (cos 0)(x− 0)− sin(0)

2!
(x− 0)2 − cos(0)

3!
(x− 0)3

= 0 + x− 0− x3

6
= x− x3

6
.

We can expand further to higher orders, which yields

f(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·

We show the first few approximations in Figure 1.6.
One should be reminded that Taylor approximation approximates a function f(x)

at a particular point x = a. Therefore, the approximation of f near x = 0 and the

11
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approximation of f near x = π/2 are different. For example, the Taylor approximation
at x = π/2 for f(x) = sinx is

f(x) = sin
π

2
+ cos

π

2

(
x− π

2

)
−

sin π
2

2!

(
x− π

2

)2
−

cos π
2

3!

(
x− π

2

)3
= 1 + 0− 1

4

(
x− π

2

)2
− 0 = 1− 1

4

(
x− π

2

)2
.

-10 -5 0 5 10

x

-4

-2

0

2

4

sin x

3rd order

5th order

7th order

-10 -5 0 5 10

x

-4

-2

0

2

4

sin x

3rd order

5th order

7th order

(a) Approximate at x = 0 (b) Approximate at x = π/2

Figure 1.6: Taylor approximation of the function f(x) = sinx.

1.2.2 Exponential series

An immediate application of the Taylor approximation is to derive the exponential series.

Theorem 1.4. Let x be any real number. Then,

ex = 1 + x+
x2

2
+

x3

3!
+ · · · =

∞∑
k=0

xk

k!
. (1.8)

Proof. Let f(x) = ex for any x. Then, the Taylor approximation around x = 0 is

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2!
(x− 0)2 + · · ·

= e0 + e0(x− 0) +
e0

2!
(x− 0)2 + · · ·

= 1 + x+
x2

2
+ · · · =

∞∑
k=0

xk

k!
.

□

Practice Exercise 1.5. Evaluate

∞∑
k=0

λke−λ

k!
.

12



1.2. APPROXIMATION

Solution.
∞∑
k=0

λke−λ

k!
= e−λ

∞∑
k=0

λk

k!
= e−λeλ = 1.

This result will be useful for Poisson random variables in Chapter 3.

If we substitute x = jθ where j =
√
−1, then we can show that

ejθ︸︷︷︸
=cos θ+j sin θ

= 1 + jθ +
(jθ)2

2!
+ · · ·

=

(
1− θ2

2!
+

θ4

4!
+ · · ·

)
︸ ︷︷ ︸

real

+ j

(
θ − θ3

3!
+ · · ·

)
︸ ︷︷ ︸

imaginary

Matching the real and the imaginary terms, we can show that

cos θ = 1− θ2

2!
+

θ4

4!
+ · · ·

sin θ = θ − θ3

3!
+

θ5

5!
+ · · ·

This gives the infinite series representations of the two trigonometric functions.

1.2.3 Logarithmic approximation

Taylor approximation also allows us to find approximations to logarithmic functions. We
start by presenting a lemma.

Lemma 1.1. Let 0 < x < 1 be a constant. Then,

log(1 + x) = x− x2 +O(x3). (1.9)

Proof. Let f(x) = log(1 + x). Then, the derivatives of f are

f ′(x) =
1

(1 + x)
, and f ′′(x) = − 1

(1 + x)2
.

Taylor approximation at x = 0 gives

f(x) = f(0) + f ′(0)(x− 0) +
f ′′(0)

2
(x− 0)2 +O(x3)

= log 1 +

(
1

(1 + 0)

)
x−

(
1

(1 + 0)2

)
x2 +O(x3)

= x− x2 +O(x3).

□
The difference between this result and the result we showed in the beginning of this

section is the order of polynomials we used to approximate the logarithm:

13
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� First-order: log(1 + x) = x

� Second-order: log(1 + x) = x− x2.

What order of approximation is good? It depends on where you want the approximation to
be good, and how far you want the approximation to go. The difference between first-order
and second-order approximations is shown in Figure 1.7.

0 1 2 3 4 5

0

0.5

1

1.5

2

0 1 2 3 4 5

0

0.5

1

1.5

2

First-order approximation Second-order approximation

Figure 1.7: The function f(x) = log(1 + x), the first-order approximation f̂(x) = x, and the second-

order approximation f̂(x) = x− x2.

Example 1.2. When we prove the Central Limit Theorem in Chapter 6, we need to
use the following result.

lim
N→∞

(
1 +

s2

2N

)N

= es
2/2.

The proof of this equation can be done using the Taylor approximation. Consider

N log
(
1 + s2

N

)
. By the logarithmic lemma, we can obtain the second-order approxi-

mation:

log

(
1 +

s2

2N

)
=

s2

2N
− s4

4N2
.

Therefore, multiplying both sides by N yields

N log

(
1 +

s2

2N

)
=

s2

2
− s4

4N
.

Putting the limit N →∞ we can show that

lim
N→∞

{
N log

(
1 +

s2

2N

)}
=

s2

2
.

Taking exponential on both sides yields

exp

{
lim

N→∞
N log

(
1 +

s2

2N

)}
= exp

{
s2

2

}
.

Moving the limit outside the exponential yields the result. Figure 1.8 provides a pic-
torial illustration.
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0 0.2 0.4 0.6 0.8 1

1
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Figure 1.8: We plot a sequence of function fN (x) =
(
1 + s2

2N

)N

and its limit f(x) = es
2/2.

1.3 Integration

When you learned calculus, your teacher probably told you that there are two ways to
compute an integral:

� Substitution: ∫
f(ax) dx =

1

a

∫
f(u) du.

� By parts: ∫
u dv = u v −

∫
v du.

Besides these two, we want to teach you two more. The first technique is even and odd
functions when integrating a function symmetrically about the y-axis. If a function is even,
you just need to integrate half of the function. If a function is odd, you will get a zero. The
second technique is to leverage the fact that a probability density function integrates to 1.
We will discuss the first technique here and defer the second technique to Chapter 4.

Besides the two integration techniques, we will review the fundamental theorem of
calculus. We will need it when we study cumulative distribution functions in Chapter 4.

1.3.1 Odd and even functions

Definition 1.3. A function f : R→ R is even if for any x ∈ R,

f(x) = f(−x), (1.10)

and f is odd if
f(x) = −f(−x). (1.11)
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Essentially, an even function flips over about the y-axis, whereas an odd function flips over
both the x- and y-axes.

Example 1.3. The function f(x) = x2 − 0.4x4 is even, because

f(−x) = (−x)2 − 0.4(−x)4 = x2 − 0.4x4 = f(x).

See Figure 1.9(a) for illustration. When integrating the function, we have∫ 1

−1
f(x) dx = 2

∫ 1

0

f(x) dx = 2

∫ 1

0

x2 − 0.44 dx = 2

[
x3

3
− 0.4

5
x5

]x=1

x=0

=
38

75
.

Example 1.4. The function f(x) = x exp(−x2/2) is odd, because

f(−x) = (−x) exp
{
− (−x)2

2

}
= −x exp

{
−x2

2

}
= −f(x).

See Figure 1.9(b) for illustration. When integrating the function, we can let u = −x.
Then, the integral becomes∫ 1

−1
f(x) dx =

∫ 0

−1
f(x) dx+

∫ 1

0

f(x) dx

=

∫ 1

0

f(−u) du+

∫ 1

0

f(x) dx

= −
∫ 1

0

f(u) du+

∫ 1

0

f(x) dx = 0.
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(a) Even function (b) Odd function

Figure 1.9: An even function is symmetric about the y-axis, and so the integration
∫ a

−a
f(x) dx =

2
∫ a

0
f(x) dx. An odd function is anti-symmetric about the y-axis. Thus,

∫ a

−a
f(x) dx = 0.
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1.3.2 Fundamental Theorem of Calculus

Our following result is the Fundamental Theorem of Calculus. It is a handy tool that links
integration and differentiation.

Theorem 1.5 (Fundamental Theorem of Calculus). Let f : [a, b]→ R be a continu-
ous function defined on a closed interval [a, b]. Then, for any x ∈ (a, b),

f(x) =
d

dx

∫ x

a

f(t) dt, (1.12)

Before we prove the result, let us understand the theorem if you have forgotten its meaning.

Example 1.5. Consider a function f(t) = t2. If we integrate the function from 0 to
x, we will obtain another function

F (x)
def
=

∫ x

0

f(t) dt =

∫ x

0

t2 dt =
x3

3
.

On the other hand, we can differentiate F (x) to obtain f(x):

f(x) =
d

dx
F (x) =

d

dx

x3

3
= x2.

The fundamental theorem of calculus basically puts the two together:

f(x) =
d

dx

∫ x

0

f(t) dt.

That’s it. Nothing more and nothing less.

How can the fundamental theorem of calculus ever be useful when studying probabil-
ity? Very soon you will learn two concepts: probability density function and cumulative
distribution function. These two functions are related to each other by the fundamental
theorem of calculus. To give you a concrete example, we write down the probability density
function of an exponential random variable. (Please do not panic about the exponential
random variable. Just think of it as a “rapidly decaying” function.)

f(x) = e−x, x ≥ 0.

It turns out that the cumulative distribution function is

F (x) =

∫ x

0

f(t) dt =

∫ x

0

e−t dt = 1− e−x.

You can also check that f(x) = d
dxF (x). The fundamental theorem of calculus says that if

you tell me F (x) =
∫ x

0
e−t dt (for whatever reason), I will be able to tell you that f(x) = e−x

merely by visually inspecting the integrand without doing the differentiation.
Figure 1.10 illustrates the pair of functions f(x) = e−x and F (x) = 1−e−x. One thing

you should notice is that the height of F (x) is the area under the curve of f(t) from −∞ to x.
For example, in Figure 1.10 we show the area under the curve from 0 to 2. Correspondingly
in F (x), the height is F (2).
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Figure 1.10: The pair of functions f(x) = e−x and F (x) = 1− e−x

The following proof of the Fundamental Theorem of Calculus can be skipped if it is your
first time reading the book.

Proof. Our proof is based on Stewart (6th Edition), Section 5.3. Define the integral as a
function F :

F (x) =

∫ x

a

f(t) dt.

The derivative of F with respect to x is

d

dx
F (x) = lim

h→0

F (x+ h)− F (x)

h

= lim
h→0

1

h

(∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

)

= lim
h→0

1

h

∫ x+h

x

f(t) dt

(a)

≤ lim
h→0

1

h

∫ x+h

x

{
max

x≤τ≤x+h
f(τ)

}
dt

= lim
h→0

{
max

x≤τ≤x+h
f(τ)

}
.

Here, the inequality in (a) holds because

f(t) ≤ max
x≤τ≤x+h

f(τ)

for all x ≤ t ≤ x+ h. The maximum exists because f is continuous in a closed interval.
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Using the parallel argument, we can show that

d

dx
F (x) = lim

h→0

F (x+ h)− F (x)

h

= lim
h→0

1

h

(∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

)

= lim
h→0

1

h

∫ x+h

x

f(t) dt

≥ lim
h→0

1

h

∫ x+h

x

{
min

x≤τ≤x+h
f(τ)

}
dt

= lim
h→0

{
min

x≤τ≤x+h
f(τ)

}
.

Combining the two results, we have that

lim
h→0

{
min

x≤τ≤x+h
f(τ)

}
≤ d

dx
F (x) ≤ lim

h→0

{
max

x≤τ≤x+h
f(τ)

}
.

However, since the two limits are both converging to f(x) as h → 0, we conclude that
d
dxF (x) = f(x).

□

Remark. An alternative proof is to use Mean Value Theorem in terms of Riemann-Stieltjes
integrals (see, e.g., Tom Apostol, Mathematical Analysis, 2nd edition, Theorem 7.34). To
handle more general functions such as delta functions, one can use techniques in Lebesgue’s
integration. However, this is beyond the scope of this book.

This is the end of the proof. Please join us again.

In many practical problems, the fundamental theorem of calculus needs to be used in
conjunction with the chain rule.

Corollary 1.3. Let f : [a, b]→ R be a continuous function defined on a closed interval
[a, b]. Let g : R → [a, b] be a continuously differentiable function. Then, for any x ∈
(a, b),

d

dx

∫ g(x)

a

f(t) dt = g′(x) · f(g(x)). (1.13)

Proof. We can prove this with the chain rule: Let y = g(x). Then we have

d

dx

∫ g(x)

a

f(t) dt =
dy

dx
· d

dy

∫ y

a

f(t) dt = g′(x) f(y),

which completes the proof.
□
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Practice Exercise 1.6. Evaluate the integral

d

dx

∫ x−µ

0

1√
2πσ2

exp

{
− t2

2σ2

}
dt.

Solution. Let y = x− µ. Then by using the fundamental theorem of calculus, we can
show that

d

dx

∫ x−µ

0

1√
2πσ2

exp

{
− t2

2σ2

}
dt =

dy

dx
· d

dy

∫ y

0

1√
2πσ2

exp

{
− t2

2σ2

}
dt

=
d(x− µ)

dx
· 1√

2πσ2
exp

{
− y2

2σ2

}
=

1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
.

This result will be useful when we do linear transformations of a Gaussian random
variable in Chapter 4.

1.4 Linear Algebra

The two most important subjects for data science are probability, which is the subject of the
book you are reading, and linear algebra, which concerns matrices and vectors. We cannot
cover linear algebra in detail because this would require another book. However, we need to
highlight some ideas that are important for doing data analysis.

1.4.1 Why do we need linear algebra in data science?

Consider a dataset of the crime rate of several cities as shown below, downloaded from
https://web.stanford.edu/~hastie/StatLearnSparsity/data.html.

The table shows that the crime rate depends on several factors such as funding for the
police department, the percentage of high school graduates, etc.

city crime rate funding hs no-hs college college4

1 478 40 74 11 31 20
2 494 32 72 11 43 18
3 643 57 71 18 16 16
4 341 31 71 11 25 19
...

...
...

...
...

...
...

50 940 66 67 26 18 16
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What questions can we ask about this table? We can ask: What is the most influential
cause of the crime rate? What are the leading contributions to the crime rate? To answer
these questions, we need to describe these numbers. One way to do it is to put the numbers
in matrices and vectors. For example,

ycrime =


478
494
...

940

 , xfund =


40
32
...
66

 , xhs =


74
72
...
67

 , . . .

With this vector expression of the data, the analysis questions can roughly be translated
to finding β’s in the following equation:

ycrime = βfundxfund + βhsxhs + · · ·+ βcollege4xcollege4.

This equation offers a lot of useful insights. First, it is a linear model of ycrime. We call
it a linear model because the observable ycrime is written as a linear combination of the
variables xfund,xhs, etc. The linear model assumes that the variables are scaled and added
to generate the observed phenomena. This assumption is not always realistic, but it is often
a fair assumption that greatly simplifies the problem. For example, if we can show that all
β’s are zero except βfund, then we can conclude that the crime rate is solely dependent on
the police funding. If two variables are correlated, e.g., high school graduate and college
graduate, we would expect the β’s to change simultaneously.

The linear model can further be simplified to a matrix-vector equation:
|
|

ycrime

|
|

 =


| | |
| | |

xfund xhs · · · xcollege4

| | |
| | |




βfund

βhs

...
βcollege4


Here, the lines “|” emphasize that the vectors are column vectors. If we denote the matrix
in the middle as A and the vector as β, then the equation is equivalent to y = Aβ. So we
can find β by appropriately inverting the matrix A. If two columns of A are dependent, we
will not be able to resolve the corresponding β’s uniquely.

As you can see from the above data analysis problem, matrices and vectors offer a way
to describe the data. We will discuss the calculations in Chapter 7. However, to understand
how to interpret the results from the matrix-vector equations, we need to review some basic
ideas about matrices and vectors.

1.4.2 Everything you need to know about linear algebra

Throughout this book, you will see different sets of notations. For linear algebra, we also
have a set of notations. We denote x ∈ Rd a d-dimensional vector taking real numbers as its
entries. An M -by-N matrix is denoted as X ∈ RM×N . The transpose of a matrix is denoted
as XT . A matrix X can be viewed according to its columns and its rows:

X =

 | | |
x1 x2 · · · xN

| | |

 , and X =


— x1 —
— x2 —

...
— xM —

 .
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Here, xj denotes the jth column of X, and xi denotes the ith row of X. The (i, j)th element
of X is denoted as xij or [X]ij . The identity matrix is denoted as I. The ith column of I
is denoted as ei = [0, . . . , 1, . . . , 0]T , and is called the ith standard basis vector. An all-zero
vector is denoted as 0 = [0, . . . , 0]T .

What is the most important thing to know about linear algebra? From a data analysis
point of view, Figure 1.11 gives us the answer. The picture is straightforward, but it captures
all the essence. In almost all the data analysis problems, ultimately, there are three things we
care about: (i) The observable vector y, (ii) the variable vectors xn, and (iii) the coefficients
βn. The set of variable vectors {xn}Nn=1 spans a vector space in which all vectors are living.
Some of these variable vectors are correlated, and some are not. However, for the sake of
this discussion, let us assume they are independent of each other. Then for any observable
vector y, we can always project y in the directions determined by {xn}Nn=1. The projection
of y onto xn is the coefficient βn. A larger value of βn means that the variable xn has more
contributions.

Figure 1.11: Representing an observable vector y by a linear combination of variable vectors x1, x2

and x3. The combination weights are β1, β2, β3.

Why is this picture so important? Because most of the data analysis problems can be
expressed, or approximately expressed, by the picture:

y =

N∑
n=1

βnxn.

If you recall the crime rate example, this equation is precisely the linear model we used to
describe the crime rate. This equation can also describe many other problems.

Example 1.6. Polynomial fitting. Consider a dataset of pairs of numbers (tm, ym) for
m = 1, . . . ,M , as shown in Figure 1.12. After a visual inspection of the dataset, we
propose to use a line to fit the data. A line is specified by the equation

ym = atm + b, m = 1, . . . ,M,

where a ∈ R is the slope and b ∈ R is the y-intercept. The goal of this problem is to
find one line (which is fully characterized by (a, b)) such that it has the best fit to all
the data pairs (tm, ym) for m = 1, . . . ,M . This problem can be described in matrices
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and vectors by noting that  y1
...

yM


︸ ︷︷ ︸

y

= a︸︷︷︸
β1

 t1
...
tM


︸ ︷︷ ︸

x1

+ b︸︷︷︸
β2

1...
1


︸︷︷︸
x2

,

or more compactly,
y = β1x1 + β2x2.

Here, x1 = [t1, . . . , tM ]T contains all the variable values, and x2 = [1, . . . , 1]T contains
a constant offset.

tm ym
0.1622 2.1227
0.7943 3.3354

...
...

0.7379 3.4054
0.2691 2.5672
0.4228 2.3796
0.6020 3.2942

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

data

best fit

candidate

Figure 1.12: Example of fitting a set of data points. The problem can be described by y =
β1x1 + β2x2.

Example 1.7. Image compression. The JPEG compression for images is based on
the concept of discrete cosine transform (DCT). The DCT consists of a set of basis
vectors, or {xn}Nn=1 using our notation. In the most standard setting, each basis vector
xn consists of 8×8 pixels, and there are N = 64 of these xn’s. Given an image, we can
partition the image into M small blocks of 8× 8 pixels. Let us call one of these blocks
y. Then, DCT represents the observation y as a linear combination of the DCT basis
vectors:

y =

N∑
n=1

βnxn.

The coefficients {βn}Nn=1 are called the DCT coefficients. They provide a representa-
tion of y, because once we know {βn}Nn=1, we can completely describe y because the
basis vectors {xn}Nn=1 are known and fixed. The situation is depicted in Figure 1.13.

How can we compress images using DCT? In the 1970s, scientists found that most
images have strong leading DCT coefficients but weak tail DCT coefficients. In other
words, among the N = 64 βn’s, only the first few are important. If we truncate the
number of DCT coefficients, we can effectively compress the number of bits required
to represent the image.
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Figure 1.13: JPEG image compression is based on the concept of discrete cosine transform, which
can be formulated as a matrix-vector problem.

We hope by now you are convinced of the importance of matrices and vectors in the
context of data science. They are not “yet another” subject but an essential tool you must
know how to use. So, what are the technical materials you must master? Here we go.

1.4.3 Inner products and norms

We assume that you know the basic operations such as matrix-vector multiplication, taking
the transpose, etc. If you have forgotten these, please consult any undergraduate linear
algebra textbook such as Gilbert Strang’s Linear Algebra and its Applications. We will
highlight a few of the most important operations for our purposes.

Definition 1.4 (Inner product). Let x = [x1, . . . , xN ]T , and y = [y1, . . . , yN ]T . The
inner product xTy is

xTy =

N∑
i=1

xiyi. (1.14)

Practice Exercise 1.7. Let x = [1, 0, −1]T , and y = [3, 2, 0]T . Find xTy.

Solution. The inner product is xTy = (1)(3) + (0)(2) + (−1)(0) = 3.

Inner products are important because they tell us how two vectors are correlated.
Figure 1.14 depicts the geometric meaning of an inner product. If two vectors are correlated
(i.e., nearly parallel), then the inner product will give us a large value. Conversely, if the
two vectors are close to perpendicular, then the inner product will be small. Therefore, the
inner product provides a measure of the closeness/similarity between two vectors.

Figure 1.14: Geometric interpretation of inner product: We project one vector onto the other vector.
The projected distance is the inner product.

24



1.4. LINEAR ALGEBRA

Creating vectors and computing the inner products are straightforward in MATLAB.
We simply need to define the column vectors x and y by using the command [] with ; to
denote the next row. The inner product is done using the transpose operation x’ and vector
multiplication *.

% MATLAB code to perform an inner product

x = [1 0 -1];

y = [3 2 0];

z = x’*y;

In Python, constructing a vector is done using the command np.array. Inside this
command, one needs to enter the array. For a column vector, we write [[1],[2],[3]], with
an outer [], and three inner [] for each entry. If the vector is a row vector, the one can omit
the inner []’s by just calling np.array([1, 2, 3]). Given two column vectors x and y,
the inner product is computed via np.dot(x.T,y), where np.dot is the command for inner
product, and x.T returns the transpose of x. One can also call np.transpose(x), which is
the same as x.T.

# Python code to perform an inner product

import numpy as np

x = np.array([[1],[0],[-1]])

y = np.array([[3],[2],[0]])

z = np.dot(np.transpose(x),y)

print(z)

In data analytics, the inner product of two vectors can be useful. Consider the vectors
in Table 1.1. Just from looking at the numbers, you probably will not see anything wrong.
However, let’s compute the inner products. It turns out that xT

1 x2 = −0.0031, whereas
xT
1 x3 = 2.0020. There is almost no correlation between x1 and x2, but there is a substan-

tial correlation between x1 and x3. What happened? The vectors x1 and x2 are random
vectors constructed independently and uncorrelated to each other. The last vector x3 was
constructed by x3 = 2x1 − π/1000. Since x3 is completely constructed from x1, they have
to be correlated.

x1 x2 x3

0.0006 −0.0011 −0.0020
−0.0014 −0.0024 −0.0059
−0.0034 0.0073 −0.0099

...
...

...
0.0001 −0.0066 −0.0030
0.0074 0.0046 0.0116
0.0007 −0.0061 −0.0017

Table 1.1: Three example vectors.

One caveat for this example is that the naive inner product xT
i xj is scale-dependent.

For example, the vectors x3 = x1 and x3 = 1000x1 have the same amount of correlation,

25



CHAPTER 1. MATHEMATICAL BACKGROUND

but the simple inner product will give a larger value for the latter case. To solve this problem
we first define the norm of the vectors:

Definition 1.5 (Norm). Let x = [x1, . . . , xN ]T be a vector. The ℓp-norm of x is

∥x∥p =

(
N∑
i=1

xp
i

)1/p

, (1.15)

for any p ≥ 1.

The norm essentially tells us the length of the vector. This is most obvious if we consider
the ℓ2-norm:

∥x∥2 =

(
N∑
i=1

x2
i

)1/2

.

By taking the square on both sides, one can show that ∥x∥22 = xTx. This is called the
squared ℓ2-norm, and is the sum of the squares.

On MATLAB, computing the norm is done using the command norm. Here, we can
indicate the types of norms, e.g., norm(x,1) returns the ℓ1-norm whereas norm(x,2) returns
the ℓ2-norm (which is also the default).

% MATLAB code to compute the norm

x = [1 0 -1];

x_norm = norm(x);

On Python, the norm command is listed in the np.linalg. To call the ℓ1-norm, we use
np.linalg.norm(x,1), and by default the ℓ2-norm is np.linalg.norm(x).

# Python code to compute the norm

import numpy as np

x = np.array([[1],[0],[-1]])

x_norm = np.linalg.norm(x)

Using the norm, one can define an angle called the cosine angle between two vectors.

Definition 1.6. The cosine angle between two vectors x and y is

cos θ =
xTy

∥x∥2∥y∥2
. (1.16)

The difference between the cosine angle and the basic inner product is the normaliza-
tion in the denominator, which is the product ∥x∥2∥y∥2. This normalization factor scales
the vector x to x/∥x∥2 and y to y/∥y∥2. The scaling makes the length of the new vector
equal to unity, but it does not change the vector’s orientation. Therefore, the cosine angle
is not affected by a very long vector or a very short vector. Only the angle matters. See
Figure 1.15.
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Figure 1.15: The cosine angle is the inner product divided by the norms of the vectors.

Going back to the previous example, after normalization we can show that the cosine
angle between x1 and x2 is cos θ1,2 = −0.0031, whereas the cosine angle between x1 and
x3 is cos θ1,3 = 0.8958. There is still a strong correlation between x1 and x3, but now using
the cosine angle the value is between −1 and +1.

Remark 1: There are other norms one can use. The ℓ1-norm is useful for sparsemodels
where we want to have the fewest possible non-zeros. The ℓ1-norm of x is

∥x∥1 =

N∑
i=1

|xi|,

which is the sum of absolute values. The ℓ∞-norm picks the maximum of {x1, . . . , xN}:

∥x∥∞ = lim
p→∞

(
N∑
i=1

xp
i

)1/p

= max {x1, . . . , xN} ,

because as p→∞, only the largest element will be amplified.

Remark 2: The standard ℓ2-norm is a circle: Just consider x = [x1, x2]
T . The norm

is ∥x∥2 =
√

x2
1 + x2

2. We can convert the circle to ellipses by considering a weighted norm.

Definition 1.7 (Weighted ℓ2-norm square). Let x = [x1, . . . , xN ]T and let W =
diag(w1, . . . , wN ) be a non-negative diagonal matrix. The weighted ℓ2-norm square of
x is

∥x∥2W = xTWx

=
[
x1 . . . xN

] w1 . . . 0
...

. . .
...

0 . . . wN


x1

...
xN

 =

N∑
i=1

wix
2
i . (1.17)

The geometry of the weighted ℓ2-norm is determined by the matrix W . For example,
if W = I (the identity operator), then ∥x∥2W = ∥x∥22, which defines a circle. If W is any
“non-negative” matrix2, then ∥x∥2W defines an ellipse.

2The technical term for these matrices is positive semi-definite matrices.
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In MATLAB, the weighted inner product is just a sequence of two matrix-vector mul-
tiplications. This can be done using the command x’*W*x as shown below.

% MATLAB code to compute the weighted norm

W = [1 2 3; 4 5 6; 7 8 9];

x = [2; -1; 1];

z = x’*W*x

In Python, constructing the matrix W and the column vector x is done using np.array.
The matrix-vector multiplication is done using two np.dot commands: one for np.dot(W,x)
and the other one for np.dot(x.T, np.dot(W,x)).

# Python code to compute the weighted norm

import numpy as np

W = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

x = np.array([[2],[-1],[1]])

z = np.dot(x.T, np.dot(W,x))

print(z)

1.4.4 Matrix calculus

The last linear algebra topic we need to review is matrix calculus. As its name indicates,
matrix calculus is about the differentiation of matrices and vectors. Why do we need differ-
entiation for matrices and vectors? Because we want to find the minimum or maximum of
a scalar function with a vector input.

Let us go back to the crime rate problem we discussed earlier. Given the data, we
want to find the model coefficients β1, . . . , βN such that the variables can best explain the
observation. In other words, we want to minimize the deviation between y and the prediction
offered by our model:

minimize
β1,...,βN

∥∥∥∥∥y −
N∑

n=1

βnxn

∥∥∥∥∥
2

.

This equation is self-explanatory. The norm ∥♣ − ♡∥2 measures the deviation. If y can
be perfectly explained by {xn}Nn=1, then the norm can eventually go to zero by finding a
good set of {β1, . . . , βN}. The symbol minimize

β1,...,βN

means to minimize the function by finding

{β1, . . . , βN}. Note that the norm is taking a vector as the input and generating a scalar as
the output. It can be expressed as

ε(β)
def
=

∥∥∥∥∥y −
N∑

n=1

βnxn

∥∥∥∥∥
2

,

to emphasize this relationship. Here we define β = [β1, . . . , βN ]T as the collection of all
coefficients.

Given this setup, how would you determine β such that the deviation is minimized?
Our calculus teachers told us that we could take the function’s derivative and set it to zero
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for scalar problems. It is the same story for vectors. What we do is to take the derivative of
the error and set it equal to zero:

d

dβ
ε(β) = 0.

Now the question arises, how do we take the derivatives of ε(β) when it takes a vector as
input? If we can answer this question, we will find the best β. The answer is straightforward.
Since the function has one output and many inputs, take the derivative for each element
independently. This is called the scalar differentiation of vectors.

Definition 1.8 (Scalar differentiation of vectors). Let f : RN → R be a differentiable
scalar function, and let y = f(x) for some input x ∈ RN . Then,

dy

dx
=

dy/dx1

...
dy/dxN

 .

As you can see from this definition, there is nothing conceptually challenging here. The only
difficulty is that things can get tedious because there will be many terms. However, the good
news is that mathematicians have already compiled a list of identities for common matrix
differentiation. So instead of deriving every equation from scratch, we can enjoy the fruit of
their hard work by referring to those formulae. The best place to find these equations is the
Matrix Cookbook by Petersen and Pedersen.3 Here, we will mention two of the most useful
results.

Example 1.8. Let y = xTAx for any matrix A ∈ RN×N . Find dy
dx .

Solution.
d

dx

(
xTAx

)
= Ax+ATx.

Now, if A is symmetric, i.e., A = AT , then

d

dx

(
xTAx

)
= 2Ax.

Example 1.9. Let ε = ∥Ax− y∥22, where A ∈ RN×N is symmetric. Find dε
dx .

Solution. First, we note that

ε = ∥Ax− y∥22 = xTATAx− 2yTAx+ yTy.

3https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Taking the derivative with respect to x yields

dε

dx
= 2ATAx− 2ATy

= 2AT (Ax− y).

Going back to the crime rate problem, we can now show that

0 =
dε

dβ
∥y −Xβ∥2 = 2XT (Xβ − y).

Therefore, the solution is
β̂ = (XTX)−1Xy.

As you can see, if we do not have access to the matrix calculus, we will not be able to solve the
minimization problem. (There are alternative paths that do not require matrix calculus, but
they require an understanding of linear subspaces and properties of the projection operators.
So in some sense, matrix calculus is the easiest way to solve the problem.) When we discuss
the linear regression methods in Chapter 7, we will cover the interpretation of the inverses
and related topics.

In MATLAB and Python, matrix inversion is done using the command inv in MAT-
LAB and np.linalg.inv in Python. Below is an example in Python.

# Python code to compute a matrix inverse

import numpy as np

X = np.array([[1, 3], [-2, 7], [0, 1]])

XtX = np.dot(X.T, X)

XtXinv = np.linalg.inv(XtX)

print(XtXinv)

Sometimes, instead of computing the matrix inverse we are more interested in solving a
linear equationXβ = y (the solution of which is β̂ = (XTX)−1Xy). In both MATLAB and
Python, there are built-in commands to do this. In MATLAB, the command is \ (backslash).

% MATLAB code to solve X beta = y

X = [1 3; -2 7; 0 1];

y = [2; 1; 0];

beta = X\y;

In Python, the built-in command is np.linalg.lstsq.

# Python code to solve X beta = y

import numpy as np

X = np.array([[1, 3], [-2, 7], [0, 1]])

y = np.array([[2],[1],[0]])

beta = np.linalg.lstsq(X, y, rcond=None)[0]

print(beta)
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Closing remark: In this section, we have given a brief introduction to a few of the most
relevant concepts in linear algebra. We will introduce further concepts in linear algebra in
later chapters, such as eigenvalues, principal component analysis, linear transformations,
and regularization, as they become useful for our discussion.

1.5 Basic Combinatorics

The last topic we review in this chapter is combinatorics. Combinatorics concerns the
number of configurations that can be obtained from certain discrete experiments. It is useful
because it provides a systematic way of enumerating cases. Combinatorics often becomes
very challenging as the complexity of the event grows. However, you may rest assured that
in this book, we will not tackle the more difficult problems of combinatorics; we will confine
our discussion to two of the most basic principles: permutation and combination.

1.5.1 Birthday paradox

To motivate the discussion of combinatorics, let us start with the following problem. Suppose
there are 50 people in a room. What is the probability that at least one pair of people have
the same birthday (month and day)? (We exclude Feb. 29 in this problem.)

The first thing you might be thinking is that since there are 365 days, we need at least
366 people to ensure that one pair has the same birthday. Therefore, the chance that 2 of
50 people have the same birthday is low. This seems reasonable, but let’s do a simulated
experiment. In Figure 1.16 we plot the probability as a function of the number of people.
For a room containing 50 people, the probability is 97%. To get a 50% probability, we just
need 23 people! How is this possible?
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Figure 1.16: The probability for two people in a group to have the same birthday as a function of the
number of people in the group.

If you think about this problem more deeply, you will probably realize that to solve the
problem, we must carefully enumerate all the possible configurations. How can we do this?
Well, suppose you walk into the room and sequentially pick two people. The probability
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that they have different birthdays is

P[The first 2 people have different birthdays] =
365

365
× 364

365
.

When you ask the first person to tell you their birthday, he or she can occupy any of the
365 slots. This gives us 365

365 . The second person has one slot short because the first person
has taken it, and so the probability that he or she has a different birthday from the first
person is 364

365 . Note that this calculation is independent of how many people you have in the
room because you are picking them sequentially.

If you now choose a third person, the probability that they have different birthdays is

P[The first 3 people have different birthdays] =
365

365
× 364

365
× 363

365
.

This process can be visualized in Figure 1.17.

Figure 1.17: The probability for two people to have the same birthday as a function of the number of
people in the group. When there is only one person, this person can land on any of the 365 days. When
there are two people, the first person has already taken one day (out of 365 days), so the second person
can only choose 364 days. When there are three people, the first two people have occupied two days,
so there are only 363 days left. If we generalize this process, we see that the number of configurations
is 365× 364× · · · × (365− k + 1), where k is the number of people in the room.

So imagine that you keep going down the list to the 50th person. The probability that
none of these 50 people will have the same birthday is

P[The first 50 people have different birthdays]

=
365

365
× 364

365
× 363

365
× · · · × 316

365
≈ 0.03.

That means that the probability for 50 people to have different birthdays, the probability is
as little as 3%. If you take the complement, you can show that with 97% probability, there
is at least one pair of people having the same birthday.

The general equation for this problem is now easy to see:

P[The first k people have different birthdays] =
365× 364× · · · × (365− k + 1)

365× 365× · · · × 365

=
365!

(365− k)!
× 1

365k
.
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The first term in our equation, 365!
(365−k)! , is called the permutation of picking k days from

365 options. We shall discuss this operation shortly.
Why is the probability so high with only 50 people while it seems that we need 366

people to ensure two identical birthdays? The difference is the notion of probabilistic and
deterministic. The 366-people argument is deterministic. If you have 366 people, you are
certain that two people will have the same birthday. This has no conflict with the proba-
bilistic argument because the probabilistic argument says that with 50 people, we have a
97% chance of getting two identical birthdays. With a 97% success rate, you still have a
3% chance of failing. It is unlikely to happen, but it can still happen. The more people you
put into the room, the stronger guarantee you will have. However, even if you have 364
people and the probability is almost 100%, there is still no guarantee. So there is no conflict
between the two arguments since they are answering two different questions.

Now, let’s discuss the two combinatorics questions.

1.5.2 Permutation

Permutation concerns the following question:

Consider a set of n distinct balls. Suppose we want to pick k balls from the set without
replacement. How many ordered configurations can we obtain?

Note that in the above question, the word “ordered” is crucial. For example, the set
A = {a, b, c} can lead to 6 different ordered configurations

(a, b, c), (a, c, b), (b, a, c), (b, c, a), (c, a, b), (c, b, a).

As a simple illustration of how to compute the permutation, we can consider a set of
5 colored balls as shown in Figure 1.18.

Figure 1.18: Permutation. The number of choices is reduced in every stage. Therefore, the total number
is n× (n− 1)× · · · × (n− k + 1) if there are k stages.

If you start with the base, which contains five balls, you will have five choices. At one
level up, since one ball has already been taken, you have only four choices. You continue
the process until you reached the number of balls you want to collect. The number of
configurations you have generated is the permutation. Here is the formula:
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Theorem 1.6. The number of permutations of choosing k out of n is

n!

(n− k)!

where n! = n(n− 1)(n− 2) · · · 3 · 2 · 1.

Proof. Let’s list all possible ways:

Which ball to pick Number of choices Why?
The 1st ball n No has been picked, so we

have n choices
The 2nd ball n− 1 The first ball has been

picked
The 3rd ball n− 2 The first two balls have

been picked
...

...
...

The kth ball n− k + 1 The first k − 1 balls have
been picked

Total: n(n− 1) · · · (n− k + 1)

The total number of ordered configurations is n(n − 1) · · · (n− k + 1). This simplifies
to

n(n− 1)(n− 2) · · · (n− k + 1)

= n(n− 1)(n− 2) · · · (n− k + 1) · (n− k)(n− k − 1) · · · 3 · 2 · 1
(n− k)(n− k − 1) · · · 3 · 2 · 1

=
n!

(n− k)!
.

□

Practice Exercise 1.8. Consider a set of 4 balls {1, 2, 3, 4}. We want to pick two
balls at random without replacement. The ordering matters. How many permutations
can we obtain?

Solution. The possible configurations are (1,2), (2,1), (1,3), (3,1), (1,4), (4,1), (2,3),
(3,2), (2,4), (4,2), (3,4), (4,3). So totally there are 12 configurations. We can also
verify this number by noting that there are 4 balls altogether and so the number
of choices for picking the first ball is 4 and the number of choices for picking the
second ball is (4− 1) = 3. Thus, the total is 4 · 3 = 12. Referring to the formula, this
result coincides with the theorem, which states that the number of permutations is

4!
(4−2)! =

4·3·2·1
2·1 = 12.

1.5.3 Combination

Another operation in combinatorics is combination. Combination concerns the following
question:
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Consider a set of n distinct balls. Suppose we want to pick k balls from the set without
replacement. How many unordered configurations can we obtain?

Unlike permutation, combination treats a subset of balls with whatever ordering as
one single configuration. For example, the subset (a, b, c) is considered the same as (a, c, b)
or (b, c, a), etc.

Let’s go back to the 5-ball exercise. Suppose you have picked orange, green, and light
blue. This is the same combination as if you have picked {green, orange, and light blue},
or {green, light blue, and orange}. Figure 1.19 lists all the six possible configurations for
these three balls. So what is combination? Combination needs to take these repeated cases
into account.

Figure 1.19: Combination. In this problem, we are interested in picking 3 colored balls out of 5. This
will give us 5× 4× 3 = 60 permutations. However, since we are not interested in the ordering, some of
the permutations are repeated. For example, there are 6 combos of (green, light blue, orange), which is
computed from 3× 2× 1. Dividing 60 permutations by these 6 choices of the orderings will give us 10
distinct combinations of the colors.

Theorem 1.7. The number of combinations of choosing k out of n is

n!

k!(n− k)!

where n! = n(n− 1)(n− 2) · · · 3 · 2 · 1.

Proof. We start with the permutation result, which gives us n!
(n−k)! permutations. Note that

every permutation has exactly k balls. However, while these k balls can be arranged in any
order, in combination, we treat them as one single configuration. Therefore, the task is to
count the number of possible orderings for these k balls.

To this end, we note that for a set of k balls, there are in total k! possible ways of
ordering them. The number k! comes from the following table.

35



CHAPTER 1. MATHEMATICAL BACKGROUND

Which ball to pick Number of choices
The 1st ball k
The 2nd ball k − 1

...
...

The kth ball 1
Total: k(k − 1) · · · 3 · 2 · 1

Therefore, the total number of orderings for a set of k balls is k!. Since permutation
gives us n!

(n−k)! and every permutation has k! repetitions due to ordering, we divide the

number by k!. Thus the number of combinations is

n!

k!(n− k)!
.

□

Practice Exercise 1.9. Consider a set of 4 balls {1, 2, 3, 4}. We want to pick two
balls at random without replacement. The ordering does not matter. How many com-
binations can we obtain?

Solution. The permutation result gives us 12 permutations. However, among all these
12 permutations, there are only 6 distinct pairs of numbers. We can confirm this by
noting that since we picked 2 balls, there are exactly 2 possible orderings for these 2
balls. Therefore, we have 12

2 = 6 number of combinations. Using the formula of the
theorem, we check that the number of combinations is

4!

2!(4− 2)!
=

4 · 3 · 2 · 1
(2 · 1)(2 · 1)

= 6.

Example 1.10. (Ross, 8th edition, Section 1.6) Consider the equation

x1 + x2 + · · ·+ xK = N,

where {xk} are positive integers. How many combinations of solutions of this equation
are there?

Solution. We can determine the number of combinations by considering the figure
below. The integer N can be modeled as N balls in an urn. The number of variables K
is equivalent to the number of colors of these balls. Since all variables are positive, the
problem can be translated to partitioning the N balls into K buckets. This, in turn,
is the same as inserting K − 1 dividers among N − 1 holes. Therefore, the number of
combinations is (

N − 1

K − 1

)
=

(N − 1)!

(K − 1)!(N −K)!
.

For example, if N = 16 and K = 4, then the number of solutions is(
16− 1

4− 1

)
=

15!

3!12!
= 455.
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Figure 1.20: One possible solution for N = 16 and K = 4. In general, the problem is equivalent
to inserting K − 1 dividers among N − 1 balls.

Closing remark. Permutations and combinations are two ways to enumerate all the pos-
sible cases. While the conclusions are probabilistic, as the birthday paradox shows, permu-
tation and combination are deterministic. We do not need to worry about the distribution
of the samples, and we are not taking averages of anything. Thus, modern data analysis
seldom uses the concepts of permutation and combination. Accordingly, combinatorics does
not play a large role in this book.

Does it mean that combinatorics is not useful? Not quite, because it still provides us
with powerful tools for theoretical analysis. For example, in binomial random variables, we
need the concept of combination to calculate the repeated cases. The Poisson random vari-
able can be regarded as a limiting case of the binomial random variable, and so combination
is also used. Therefore, while we do not use the concepts of permutation per se, we use them
to define random variables.

1.6 Summary

In this chapter, we have reviewed several background mathematical concepts that will be-
come useful later in the book. You will find that these concepts are important for under-
standing the rest of this book. When studying these materials, we recommend not just
remembering the “recipes” of the steps but focusing on the motivations and intuitions
behind the techniques.

We would like to highlight the significance of the birthday paradox. Many of us come
from an engineering background in which we were told to ensure reliability and guarantee
success. We want to ensure that the product we deliver to our customers can survive even
in the worst-case scenario. We tend to apply deterministic arguments such as requiring 366
people to ensure complete coverage of the 365 days. In modern data analysis, the worst-case
scenario may not always be relevant because of the complexity of the problem and the cost
of such a warranty. The probabilistic argument, or the average argument, is more reasonable
and cost-effective, as you can see from our analysis of the birthday problem. The heart of
the problem is the trade-off between how much confidence you need versus how much effort
you need to expend. Suppose an event is unlikely to happen, but if it happens, it will be
a disaster. In that case, you might prefer to be very conservative to ensure that such a
disaster event has a low chance of happening. Industries related to risk management such
as insurance and investment banking are all operating under this principle.
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1.8 Problems

Exercise 1. (Video Solution)

(a) Show that
n∑

k=0

rk =
1− rn+1

1− r
.

for any 0 < r < 1. Evaluate
∑∞

k=0 r
k.

(b) Using the result of (a), evaluate

1 + 2r + 3r2 + · · · .
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(c) Evaluate the sums
∞∑
k=0

k

(
1

3

)k+1

, and

∞∑
k=2

k

(
1

4

)k−1

.

Exercise 2. (Video Solution)
Recall that

∞∑
k=0

λk

k!
= eλ.

Evaluate
∞∑
k=0

k
λke−λ

k!
, and

∞∑
k=0

k2
λke−λ

k!
.

Exercise 3. (Video Solution)
Evaluate the integrals

(a) ∫ b

a

1

b− a

(
x− a+ b

2

)2

dx.

(b) ∫ ∞
0

λxe−λx dx.

(c) ∫ ∞
−∞

λx

2
e−λ|x| dx.

Exercise 4.

(a) Compute the result of the following matrix vector multiplication using Numpy. Submit
your result and codes.

1 2 3
4 5 6
7 8 9

×
12
3

 .

(b) Plot a sine function on the interval [−π, π] with 1000 data points.

(c) Generate 10,000 uniformly distributed random numbers on interval [0, 1).

Use matplotlib.pyplot.hist to generate a histogram of all the random numbers.
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Exercise 5.
Calculate

∞∑
k=0

k

(
2

3

)k+1

.

Exercise 6.
Let

x =

[
x
y

]
, µ =

[
1
0

]
, Σ =

[
4 1
1 1

]
.

(a) Find Σ−1, the inverse of Σ.

(b) Find |Σ|, the determinant of Σ.

(c) Simplify the two-dimensional function

f(x) =
1

2π|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

(d) Use matplotlib.pyplot.contour, plot the function f(x) for the range [−3, 3] ×
[−3, 3].

Exercise 7.
Out of seven electrical engineering (EE) students and five mechanical engineering (ME)
students, a committee consisting of three EEs and two MEs is to be formed. In how many
ways can this be done if

(a) any of the EEs and any of the MEs can be included?

(b) one particular EE must be on the committee?

(c) two particular MEs cannot be on the committee?

Exercise 8.
Five blue balls, three red balls, and three white balls are placed in an urn. Three balls are
drawn at random without regard to the order in which they are drawn. Using the counting
approach to probability, find the probability that

(a) one blue ball, one red ball, and one white ball are drawn.

(b) all three balls drawn are red.

(c) exactly two of the balls drawn are blue.

Exercise 9.
A collection of 26 English letters, a-z, is mixed in a jar. Two letters are drawn at random,
one after the other.
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(a) What is the probability of drawing a vowel (a,e,i,o,u) and a consonant in either order?

(b) Write a MATLAB / Python program to verify your answer in part (a). Randomly
draw two letters without replacement and check whether one is a vowel and the other
is a consonant. Compute the probability by repeating the experiment 10000 times.

Exercise 10.
There are 50 students in a classroom.

(a) What is the probability that there is at least one pair of students having the same
birthday? Show your steps.

(b) Write a MATLAB / Python program to simulate the event and verify your answer
in (a). Hint: You probably need to repeat the simulation many times to obtain a
probability. Submit your code and result.

You may assume that a year only has 365 days. You may also assume that all days have an
equal likelihood of being taken.
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Chapter 2

Probability

Data and probability are inseparable. Data is the computational side of the story, whereas
probability is the theoretical side of the story. Any data science practice must be built on
the foundation of probability, and probability needs to address practical problems. However,
what exactly is “probability”? Mathematicians have been debating this for centuries. The
frequentists argue that probability is the relative frequency of an outcome. For example,
flipping a fair coin has a 1/2 probability of getting a head because if you flip the coin
infinitely many times, you will have half of the time getting a head. The Bayesians argue
that probability is a subjective belief. For example, the probability of getting an A in a
class is subjective because no one would want to take a class infinitely many times to obtain
the relative frequency. Both the frequentists and Bayesians have valid points. However, the
differentiation is often non-essential because the context of your problem will force you
to align with one or the other. For example, when you have a shortage of data, then the
subjectivity of the Bayesians allows you to use prior knowledge, whereas the frequentists
tell us how to compute the confidence interval of an estimate.

No matter whether you prefer the frequentist’s view or the Bayesian’s view, there is
something more fundamental thanks to Andrey Kolmogorov (1903-1987). The development
of this fundamental definition will take some effort on our part, but if we distill the essence,
we can summarize it as follows:

Probability is a measure of the size of a set.

This sentence is not a formal definition; instead, it summarizes what we believe to be the
essence of probability. We need to clarify some puzzles later in this chapter, but if you can
understand what this sentence means, you are halfway done with this book. To spell out the
details, we will describe an elementary problem that everyone knows how to solve. As we
discuss this problem, we will highlight a few key concepts that will give you some intuitive
insights into our definition of probability, after which we will explain the sequence of topics
to be covered in this chapter.

Prelude: Probability of throwing a die

Suppose that you have a fair die. It has 6 faces: { , , , , , }. What is the probability
that you get a number that is “less than 5” and is “an even number”? This is a straightfor-
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ward problem. You probably have already found the answer, which is 2
6 because “less than

5” and “an even number” means { , }. However, let’s go through the thinking process
slowly by explicitly writing down the steps.

First of all, how do we know that the denominator in 2
6 is 6? Well, because there are six

faces. These six faces form a set called the sample space. A sample space is the set containing
all possible outcomes, which in our case is Ω = { , , , , , }. The denominator 6 is the
size of the sample space.

How do we know that the numerator is 2? Again, implicitly in our minds, we have
constructed two events: E1 = “less than 5” = { , , , }, and E2 = “an even number”
= { , , }. Then we take the intersection between these two events to conclude the event
E = { , }. The numerical value “2” is the size of this event E.

So, when we say that “the probability is 2
6 ,” we are saying that the size of the event

E relative to the sample space Ω is the ratio 2
6 . This process involves measuring the size

of E and Ω. In this particular example, the measure we use is a “counter” that counts the
number of elements.

This example shows us all the necessary components of probability: (i) There is a
sample space, which is the set that contains all the possible outcomes. (ii) There is an event,
which is a subset inside the sample space. (iii) Two events E1 and E2 can be combined to
construct another event E that is still a subset inside the sample space. (iv) Probability is
a number assigned by certain rules such that it describes the relative size of the event E
compared with the sample space Ω. So, when we say that probability is a measure of the
size of a set, we create a mapping that takes in a set and outputs the size of that set.

Organization of this chapter

As you can see from this example, since probability is a measure of the size of a set, we need
to understand the operations of sets to understand probability. Accordingly, in Section 2.1
we first define sets and discuss their operations. After learning these basic concepts, we move
on to define the sample space and event space in Section 2.2. There, we discuss sample spaces
that are not necessarily countable and how probabilities are assigned to events. Of course,
assigning a probability value to an event cannot be arbitrary; otherwise, the probabilities
may be inconsistent. Consequently, in Section 2.3 we introduce the probability axioms and
formalize the notion of measure. Section 2.4 consists of a trio of topics that concern the
relationship between events using conditioning. We discuss conditional probability in Section
2.4.1, independence in Section 2.4.2, and Bayes’ theorem in Section 2.4.3.

2.1 Set Theory

2.1.1 Why study set theory?

In mathematics, we are often interested in describing a collection of numbers, for example, a
positive interval [a, b] on the real line or the ordered pairs of numbers that define a circle on
a graph with two axes. These collections of numbers can be abstractly defined as sets. In a
nutshell, a set is simply a collection of things. These things can be numbers, but they can also
be alphabets, objects, or anything. Set theory is a mathematical tool that defines operations
on sets. It provides the basic arithmetic for us to combine, separate, and decompose sets.
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Why do we start the chapter by describing set theory? Because probability is a measure
of the size of a set. Yes, probability is not just a number telling us the relative frequency of
events; it is an operator that takes a set and tells us how large the set is. Using the example
we showed in the prelude, the event “even number” of a die is a set containing numbers
{ , , }. When we apply probability to this set, we obtain the number 3

6 , as shown in
Figure 2.1. Thus sets are the foundation of the study of probability.

Figure 2.1: Probability is a measure of the size of a set. Whenever we talk about probability, it has to
be the probability of a set.

2.1.2 Basic concepts of a set

Definition 2.1 (Set). A set is a collection of elements. We denote

A = {ξ1, ξ2, . . . , ξn} (2.1)

as a set, where ξi is the ith element in the set.

In this definition, A is called a set. It is nothing but a collection of elements ξ1, . . . , ξn. What
are these ξi’s? They can be anything. Let’s see a few examples below.

Example 2.1(a). A = {apple, orange,pear} is a finite set.

Example 2.1(b). A = {1, 2, 3, 4, 5, 6} is a finite set.

Example 2.1(c). A = {2, 4, 6, 8, . . .} is a countable but infinite set.

Example 2.1(d). A = {x | 0 < x < 1} is a uncountable set.

To say that an element ξ is drawn from A, we write ξ ∈ A. For example, the number 1
is an element in the set {1, 2, 3}. We write 1 ∈ {1, 2, 3}. There are a few common sets that
we will encounter. For example,

Example 2.2(a). R is the set of all real numbers including ±∞.

Example 2.2(b). R2 is the set of ordered pairs of real numbers.

Example 2.2(c). [a, b] = {x | a ≤ x ≤ b} is a closed interval on R.
Example 2.2(d). (a, b) = {x | a < x < b} is an open interval on R.
Example 2.2(e). (a, b] = {x | a < x ≤ b} is a semi-closed interval on R.
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Figure 2.2: From left to right: a closed interval, a semi-closed (or semi-open) interval, and an open
interval.

Sets are not limited to numbers. A set can be used to describe a collection of functions.

Example 2.3. A = {f : R→ R | f(x) = ax+b, a, b ∈ R}. This is the set of all straight
lines in 2D. The notation f : R → R means that the function f takes an argument
from R and sends it to another real number in R. The definition f(x) = ax + b says
that f is taking the specific form of ax + b. Since the constants a and b can be any
real number, the equation f(x) = ax+ b enumerates all possible straight lines in 2D.
See Figure 2.3(a).

Example 2.4. A = {f : R → [−1, 1] | f(t) = cos(ω0t + θ), θ ∈ [0, 2π]}. This is
the set of all cosine functions of a fixed carrier frequency ω0. The phase θ, however,
is changing. Therefore, the equation f(t) = cos(ω0t + θ) says that the set A is the
collection of all possible cosines with different phases. See Figure 2.3(b).
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Figure 2.3: (a) The set of straight lines A = {f : R → R | f(x) = ax + b, a, b ∈ R}. (b) The set of
phase-shifted cosines A = {f : R → [−1, 1] | f(t) = cos(ω0t+ θ), θ ∈ [0, 2π]}.

A set can also be used to describe a collection of sets. Let A and B be two sets. Then
C = {A,B} is a set of sets.

Example 2.5. Let A = {1, 2} and B = {apple, orange}. Then

C = {A,B} = {{1, 2}, {apple, orange}}
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is a collection of sets. Note that here we are not saying C is the union of two sets. We
are only saying that C is a collection of two sets. See the next example.

Example 2.6. Let A = {1, 2} and B = {3}, then C = {A,B} means that

C = {{1, 2}, {3}}.

Therefore C contains only two elements. One is the set {1, 2} and the other is the set
{3}. Note that {{1, 2}, {3}} ≠ {1, 2, 3}. The former is a set of two sets. The latter is a
set of three elements.

2.1.3 Subsets

Given a set, we often want to specify a portion of the set, which is called a subset.

Definition 2.2 (Subset). B is a subset of A if for any ξ ∈ B, ξ is also in A. We
write

B ⊆ A (2.2)

to denote that B is a subset of A.

B is called a proper subset of A if B is a subset of A and B ̸= A. We denote a proper subset
as B ⊂ A. Two sets A and B are equal if and only if A ⊆ B and B ⊆ A.

Example 2.7.

� If A = {1, 2, 3, 4, 5, 6}, then B = {1, 3, 5} is a proper subset of A.

� If A = {1, 2}, then B = {1, 2} is an improper subset of A.

� If A = {t | t ≥ 0}, then B = {t | t > 0} is a proper subset of A.

Practice Exercise 2.1. Let A = {1, 2, 3}. List all the subsets of A.
Solution. The subsets of A are:

A = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Practice Exercise 2.2. Prove that two sets A and B are equal if and only if A ⊆ B
and B ⊆ A.

Solution. Suppose A ⊆ B and B ⊆ A. Assume by contradiction that A ̸= B. Then
necessarily there must exist an x such that x ∈ A but x ̸∈ B (or vice versa). But
A ⊆ B means that x ∈ A will necessarily be in B. So it is impossible to have x ̸∈ B.
Conversely, suppose that A = B. Then any x ∈ A will necessarily be in B. Therefore,
we have A ⊆ B. Similarly, if A = B then any x ∈ B will be in A, and so B ⊆ A.
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2.1.4 Empty set and universal set

Definition 2.3 (Empty Set). A set is empty if it contains no element. We denote
an empty set as

A = ∅. (2.3)

A set containing an element 0 is not an empty set. It is a set of one element, {0}. The
number of elements of the empty set is 0. The empty set is a subset of any set, i.e., ∅ ⊆ A
for any A. We use ⊆ because A could also be an empty set.

Example 2.8(a). The set A = {x | sinx > 1} is empty because no x ∈ R can make
sinx > 1.

Example 2.8(b). The set A = {x |x > 5 and x < 1} is empty because the two
conditions x > 5 and x < 1 are contradictory.

Definition 2.4 (Universal Set). The universal set is the set containing all elements
under consideration. We denote a universal set as

A = Ω. (2.4)

The universal set Ω contains itself, i.e., Ω ⊆ Ω. The universal set is a relative concept.
Usually, we first define a universal set Ω before referring to subsets of Ω. For example, we
can define Ω = R and refer to intervals in R. We can also define Ω = [0, 1] and refer to
subintervals inside [0, 1].

2.1.5 Union

We now discuss basic set operations. By operations, we mean functions of two or more sets
whose output value is a set. We use these operations to combine and separate sets. Let us
first consdier the union of two sets. See Figure 2.4 for a graphical depiction.

Definition 2.5 (Finite Union). The union of two sets A and B contains all elements
in A or in B. That is,

A ∪B = {ξ | ξ ∈ A or ξ ∈ B}. (2.5)

As the definition suggests, the union of two sets connects the sets using the logical operator
”or”. Therefore, the union of two sets is always larger than or equal to the individual sets.

Example 2.9(a). If A = {1, 2}, B = {1, 5}, then A ∪ B = {1, 2, 5}. The overlapping
element 1 is absorbed. Also, note that A ∪ B ̸= {{1, 2}, {1, 5}}. The latter is a set of
sets.

Example 2.9(b). If A = (3, 4], B = (3.5,∞), then A ∪B = (3,∞).

Example 2.9(c). If A = {f : R → R | f(x) = ax} and B = {f : R → R | f(x) = b},
then A ∪ B = a set of sloped lines with a slope a plus a set of constant lines with
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height b. Note that A ∪B ̸= {f : R→ R | f(x) = ax+ b} because the latter is a set of
sloped lines with arbitrary y-intercept.

Example 2.9(d). If A = {1, 2} and B = ∅, then A ∪B = {1, 2}.
Example. If A = {1, 2} and B = Ω, then A ∪B = Ω.

Figure 2.4: The union of two sets contains elements that are either in A or B or both.

The previous example can be generalized in the following exercise. What it says is that
if A is a subset of another set B, then the union of A and B is just B. Intuitively, this should
be straightforward because whatever you have in A is already in B, so the union will just
be B. Below is a formal proof that illustrates how to state the arguments clearly. You may
like to draw a picture to convince yourself that the proof is correct.

Practice Exercise 2.3: Prove that if A ⊆ B, then A ∪B = B.

Solution: We will show that A∪B ⊆ B and B ⊆ A∪B. Let ξ ∈ A∪B. Then ξ must
be inside either A or B (or both). In any case, since we know that A ⊆ B, it holds
that if ξ ∈ A then ξ must also be in B. Therefore, for any ξ ∈ A ∪ B we have ξ ∈ B.
This shows A ∪ B ⊆ B. Conversely, if ξ ∈ B, then ξ must be inside A ∪ B because
A ∪B is a larger set than B. So if ξ ∈ B then ξ ∈ A ∪B and hence B ⊆ A ∪B. Since
A∪B is a subset of B or equal to B, and B is a subset of A∪B or equal to A∪B, it
follows that A ∪B = B.

What should we do if we want to take the union of an infinite number of sets? First,
we need to define the concept of an infinite union.

Definition 2.6 (Infinite Union). For an infinite sequence of sets A1, A2, . . ., the in-
finite union is defined as

∞⋃
n=1

An = {ξ | ξ ∈ An for at least one n that is finite.} . (2.6)

An infinite union is a natural extension of a finite union. It is not difficult to see that

ξ ∈ A or ξ ∈ B ⇐⇒ ξ is in at least one of A and B.
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Similarly, an infinite union means that

ξ ∈ A1 or ξ ∈ A2 or ξ ∈ A3 . . . ⇐⇒ ξ is in at least one of A1, A2, A3, . . . .

The finite n requirement says that we only evaluate the sets for a finite number of n’s. This
n can be arbitrarily large, but it is finite. Why are we able to do this? Because the concept
of an infinite union is to determine A∞, which is the limit of a sequence. Like any sequence
of real numbers, the limit of a sequence of sets has to be defined by evaluating the instances
of all possible finite cases.

Consider a sequence of sets An =
[
−1, 1− 1

n

]
, for n = 1, 2, . . .. For example, A1 =

[−1, 0], A2 =
[
−1, 1

2

]
, A3 =

[
−1, 2

3

]
, A4 =

[
−1, 3

4

]
, etc.

Figure 2.5: The infinite union of
⋃∞

n=1

[
−1, 1− 1

n

]
. No matter how large n gets, the point 1 is never

included. So the infinite union is [−1, 1)

To take the infinite union, we know that the set [−1, 1) is always included, because the
right-hand limit 1− 1

n approaches 1 as n approaches ∞. So the only question concerns the
number 1. Should 1 be included? According to the definition above, we ask: Is 1 an element
of at least one of the sets A1, A2, . . . , An? Clearly it is not: 1 ̸∈ A1, 1 ̸∈ A2, . . .. In fact,
1 ̸∈ An for any finite n. Therefore 1 is not an element of the infinite union, and we conclude
that

∞⋃
n=1

An =

∞⋃
n=1

[
−1, 1− 1

n

]
= [−1, 1).

Practice Exercise 2.4. Find the infinite union of the sequences where (a) An =[
− 1, 1− 1

n

)
, (b) An =

(
− 1, 1− 1

n

]
.

Solution. (a)
⋃∞

n=1 An = [−1, 1). (b)
⋃∞

n=1 An = (−1, 1).

2.1.6 Intersection

The union of two sets is based on the logical operator or. If we use the logical operator and,
then the result is the intersection of two sets.

Definition 2.7 (Finite Intersection). The intersection of two sets A and B contains
all elements in A and in B. That is,

A ∩B = {ξ | ξ ∈ A and ξ ∈ B}. (2.7)

Figure 2.6 portrays intersection graphically. Intersection finds the common elements of the
two sets. It is not difficult to show that A ∩B ⊆ A and A ∩B ⊆ B.
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Figure 2.6: The intersection of two sets contains elements in both A and B.

Example 2.10(a). If A = {1, 2, 3, 4}, B = {1, 5, 6}, then A ∩B = {1}.
Example 2.10(b). If A = {1, 2}, B = {5, 6}, then A ∩B = ∅.
Example 2.10(c). If A = (3, 4], B = [3.5,∞), then A ∩B = [3.5, 4].

Example 2.10(d). If A = (3, 4], B = ∅, then A ∩B = ∅.
Example 2.10(e). If A = (3, 4], B = Ω, then A ∩B = (3, 4].

Example 2.11. If A = {f : R→ R | f(x) = ax} and B = {f : R→ R | f(x) = b}, then
A∩B = the intersection of a set of sloped lines with a slope a and a set of constant lines
with height b. The only line that can satisfy both sets is the line f(x) = 0. Therefore,
A ∩B = {f | f(x) = 0}.

Example 2.12. If A = {{1}, {2}} and B = {{2, 3}, {4}}, then A ∩ B = ∅. This is
because A is a set containing two sets, and B is a set containing two sets. The two sets
{2} and {2, 3} are not the same. Thus, A and B have no elements in common, and so
A ∩B = ∅.

Similarly to the infinite union, we can define the concept of infinite intersection.

Definition 2.8 (Infinite Intersection). For an infinite sequence of sets A1, A2, . . .,
the infinite intersection is defined as

∞⋂
n=1

An = {ξ | ξ ∈ An for every finite n.} (2.8)

To understand this definition, we note that

ξ ∈ A and ξ ∈ B ⇐⇒ ξ is in every one of A and B.

As a result, it follows that

ξ ∈ A1 and ξ ∈ A2 and ξ ∈ A3 . . . ⇐⇒ ξ is in every one of A1, A2, A3, . . . .
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Since the infinite intersection requires that ξ is in every one of A1, A2, . . ., An, if there is a
set Ai that does not contain ξ, the infinite intersection is an empty set.

Consider the problem of finding the infinite intersection of
⋂∞

n=1 An, where

An =

[
0, 1 +

1

n

)
.

We note that the sequence of sets is [0, 2], [0, 1.5], [0, 1.33], . . . . As n → ∞, we note that
the limit is either [0, 1) or [0, 1]. Should the right-hand limit 1 be included in the infinite
intersection? According to the definition above, we know that 1 ∈ A1, 1 ∈ A2, . . . , 1 ∈ An

for any finite n. Therefore, 1 is included and so

∞⋂
n=1

An =

∞⋂
n=1

[
0, 1 +

1

n

)
= [0, 1].

Figure 2.7: The infinite intersection of
⋂∞

n=1

[
0, 1 + 1

n

)
. No matter how large n gets, the point 1 is

never included. So the infinite intersection is [0, 1]

Practice Exercise 2.5. Find the infinite intersection of the sequences where (a)
An =

[
0, 1 + 1

n

]
, (b) An =

(
0, 1 + 1

n

)
, (c) An =

[
0, 1− 1

n

)
, (d) An =

[
0, 1− 1

n

]
.

Solution.
(a)

⋂∞
n=1 An = [0, 1].

(b)
⋂∞

n=1 An = (−1, 1].
(c)

⋂∞
n=1 An = [0, 0) = ∅.

(d)
⋂∞

n=1 An = [0, 0] = {0}.

2.1.7 Complement and difference

Besides union and intersection, there is a third basic operation on sets known as the com-
plement.

Definition 2.9 (Complement). The complement of a set A is the set containing all
elements that are in Ω but not in A. That is,

Ac = {ξ | ξ ∈ Ω and ξ ̸∈ A}. (2.9)

Figure 2.8 graphically portrays the idea of a complement. The complement is a set that
contains everything in the universal set that is not in A. Thus the complement of a set is
always relative to a specified universal set.
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Figure 2.8: [Left] The complement of a set A contains all elements that are not in A. [Right] The
difference A\B contains elements that are in A but not in B.

Example 2.13(a). Let A = {1,2,3} and Ω = {1,2,3,4,5,6}. Then Ac = {4,5,6}.
Example 2.13(b). Let A = {even integers} and Ω = {integers}. Then Ac = {odd
integers}.
Example 2.13(c). Let A = {integers} and Ω = R. Then Ac ={any real number that
is not an integer}.
Example 2.13(d). Let A = [0, 5) and Ω = R. Then Ac = (−∞, 0) ∪ [5,∞).

Example 2.13(e). Let A = R and Ω = R. Then Ac = ∅.

The concept of the complement will help us understand the concept of difference.

Definition 2.10 (Difference). The difference A\B is the set containing all elements
in A but not in B.

A\B = {ξ | ξ ∈ A and ξ ̸∈ B}. (2.10)

Figure 2.8 portrays the concept of difference graphically. Note that A\B ̸= B\A. The former
removes the elements in B whereas the latter removes the elements in A.

Example 2.14(a). Let A = {1, 3, 5, 6} and B = {2, 3, 4}. Then A\B = {1, 5, 6} and
B\A = {2, 4}.
Example 2.14(b). Let A = [0, 1], B = [2, 3], then A\B = [0, 1], and B\A = [2, 3].
This example shows that if the two sets do not overlap, there is nothing to subtract.

Example 2.14(c). Let A = [0, 1], B = R, then A\B = ∅, and B\A = (−∞, 0)∪(1,∞).
This example shows that if one of the sets is the universal set, then the difference will
either return the empty set or the complement.
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Figure 2.9: [Left] A and B are overlapping. [Right] A and B are disjoint.

Practice Exercise 2.6. Show that for any two sets A and B, the differences A\B
and B\A never overlap, i.e., (A\B) ∩ (B\A) = ∅.
Solution. Suppose, by contradiction, that the intersection is not empty so that there
exists an ξ ∈ (A\B) ∩ (B\A). Then, by the definition of intersection, ξ is an element
of (A\B) and (B\A). But if ξ is an element of (A\B), it cannot be an element of B.
This implies that ξ cannot be an element of (B\A) since it is a subset of B. This is a
contradiction because we just assumed that the ξ can live in both (A\B) and (B\A).

Difference can be defined in terms of intersection and complement:

Theorem 2.1. Let A and B be two sets. Then

A\B = A ∩Bc (2.11)

Proof. Let x ∈ A\B. Then x ∈ A and x ̸∈ B. Since x ̸∈ B, we have x ∈ Bc. Therefore,
x ∈ A and x ∈ Bc. By the definition of intersection, we have x ∈ A ∩ Bc. This shows
that A\B ⊆ A ∩ Bc. Conversely, let x ∈ A ∩ Bc. Then, x ∈ A and x ∈ Bc, which implies
that x ∈ A and x ̸∈ B. By the definition of A\B, we have that x ∈ A\B. This shows that
A ∩Bc ⊆ A\B.

□

2.1.8 Disjoint and partition

It is important to be able to quantify situations in which two sets are not overlapping. In
this situation, we say that the sets are disjoint.

Definition 2.11 (Disjoint). Two sets A and B are disjoint if

A ∩B = ∅. (2.12)

For a collection of sets {A1, A2, . . . , An}, we say that the collection is disjoint if, for
any pair i ̸= j,

Ai ∩Aj = ∅. (2.13)

A pictorial interpretation can be found in Figure 2.9.
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Example 2.15(a). Let A = {x > 1} and B = {x < 0}. Then A and B are disjoint.

Example 2.15(b). Let A = {1, 2, 3} and B = ∅. Then A and B are disjoint.

Example 2.15(c). Let A = (0, 1) and B = [1, 2). Then A and B are disjoint.

With the definition of disjoint, we can now define the powerful concept of partition.

Definition 2.12 (Partition). A collection of sets {A1, . . . , An} is a partition of the
universal set Ω if it satisfies the following conditions:

� (non-overlap) {A1, . . . , An} is disjoint:

Ai ∩Aj = ∅. (2.14)

� (decompose) Union of {A1, . . . , An} gives the universal set:

n⋃
i=1

Ai = Ω. (2.15)

In plain language, a partition is a collection of non-overlapping subsets whose union is
the universal set. Partition is important because it is a decomposition of Ω into a smaller
subset, and since these subsets do not overlap, they can be analyzed separately. Partition
is a handy tool for studying probability because it allows us to decouple complex events by
treating them as isolated sub-events.

Figure 2.10: A partition of Ω contains disjoint subsets of which the union gives us Ω.

Example 2.16. Let Ω = {1, 2, 3, 4, 5, 6}. The following sets form a partition:

A1 = {1, 2, 3}, A2 = {4, 5}, A3 = {6}

Example 2.17. Let Ω = {1, 2, 3, 4, 5, 6}. The collection

A1 = {1, 2, 3}, A2 = {4, 5}, A3 = {5, 6}

does not form a partition, because A2 ∩A3 = {5}.
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If {A1, A2, . . . , An} forms a partition of the universal set Ω, then for any B ⊆ Ω, we
can decompose B into n disjoint subsets: B ∩A1, B ∩A2, . . .B ∩An. Two properties hold:

� B ∩Ai and B ∩Aj are disjoint if i ̸= j.

� The union of B ∩A1, B ∩A2, . . .B ∩An is B.

Practice Exercise 2.7. Prove the above two statements.

Solution. To prove the first statement, we can pick ξ ∈ (B ∩ Ai). This means that
ξ ∈ B and ξ ∈ Ai. Since ξ ∈ Ai, it cannot be in Aj because Ai and Aj are disjoint.
Therefore ξ cannot live in B ∩ Aj . This completes the proof, because we just showed
that any ξ ∈ B ∩Ai cannot simultaneously live in B ∩Aj .

To prove the second statement, we pick ξ ∈
⋃n

i=1(B ∩ Ai). Since ξ lives in the
union, it has to live in at least one of the (B∩Ai) for some i. Now suppose ξ ∈ B∩Ai.
This means that ξ is in both B and Ai, so it must live in B. Therefore,

⋃n
i=1(B∩Ai) ⊆

B. Now, suppose we pick ξ ∈ B. Then since it is an element in B, it must be an element
in all of the (B ∩Ai)’s for any i. Therefore, ξ ∈

⋃n
i=1(B ∩Ai), and so we showed that

B ⊆
⋃n

i=1(B∩Ai). Combining the two directions, we conclude that
⋃n

i=1(B∩Ai) = B.

Example 2.18. Let Ω = {1, 2, 3, 4, 5, 6} and let a partition of Ω be A1 = {1, 2, 3},
A2 = {4, 5}, A3 = {6}. Let B = {1, 3, 4}. Then, by the result we just proved, B can
be decomposed into three subsets:

B ∩A1 = {1, 3}, B ∩A2 = {4}, B ∩A3 = ∅.

Thus we can see that B ∩A1, B ∩A2 and B ∩A3 are disjoint. Furthermore, the union
of these three sets gives B.

2.1.9 Set operations

When handling multiple sets, it would be useful to have some basic set operations. There
are four basic theorems concerning set operations that you need to know for our purposes
in this book:

Theorem 2.2 (Commutative). (Order does not matter)

A ∩B = B ∩A, and A ∪B = B ∪A. (2.16)

Theorem 2.3 (Associative). (How to do multiple union and intersection)

A ∪ (B ∪ C) = (A ∪B) ∪ C,

A ∩ (B ∩ C) = (A ∩B) ∩ C. (2.17)
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Theorem 2.4 (Distributive). (How to mix union and intersection)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C). (2.18)

Theorem 2.5 (De Morgan’s Law). (How to complement over intersection and union)

(A ∩B)c = Ac ∪Bc,

(A ∪B)c = Ac ∩Bc. (2.19)

Example 2.19. Consider [1, 4] ∩ ([0, 2] ∪ [3, 5]). By the distributive property we can
simplify the set as

[1, 4] ∩ ([0, 2] ∪ [3, 5]) = ([1, 4] ∩ [0, 2]) ∪ ([1, 4] ∩ [3, 5])

= [1, 2] ∪ [3, 4].

Example 2.20. Consider ([0, 1]∪ [2, 3])c. By De Morgan’s Law we can rewrite the set
as

([0, 2] ∪ [1, 3])c = [0, 2]c ∩ [1, 3]c.

2.1.10 Closing remarks about set theory

It should be apparent why set theory is useful: it shows us how to combine, split, and
remove sets. In Figure 2.11 we depict the intersection of two sets A = {even number} and
B = {less than or equal to 3}. Set theory tells us how to define the intersection so that the
probability can be applied to the resulting set.

Figure 2.11: When there are two events A and B, the probability of A∩B is determined by first taking
the intersection of the two sets and then evaluating its probability.

Universal sets and empty sets are useful too. Universal sets cover all the possible
outcomes of an experiment, so we should expect P[Ω] = 1. Empty sets contain nothing,
and so we should expect P[∅] = 0. These two properties are essential to define a probability
because no probability can be greater than 1, and no probability can be less than 0.
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2.2 Probability Space

We now formally define probability. Our discussion will be based on the slogan probability
is a measure of the size of a set. Three elements constitute a probability space:

� Sample Space Ω: The set of all possible outcomes from an experiment.

� Event Space F : The collection of all possible events. An event E is a subset in Ω that
defines an outcome or a combination of outcomes.

� Probability Law P: A mapping from an event E to a number P[E] which, ideally,
measures the size of the event.

Therefore, whenever you talk about “probability,” you need to specify the triplet (Ω,F ,P)
to define the probability space.

The necessity of the three elements is illustrated in Figure 2.12. The sample space
is the interface with the physical world. It is the collection of all possible states that can
result from an experiment. Some outcomes are more likely to happen, and some are less
likely, but this does not matter because the sample space contains every possible outcome.
The probability law is the interface with the data analysis. It is this law that defines the
likelihood of each of the outcomes. However, since the probability law measures the size of
a set, the probability law itself must be a function, a function whose argument is a set and
whose value is a number. An outcome in the sample space is not a set. Instead, a subset in
the sample space is a set. Therefore, the probability should input a subset and map it to a
number. The collection of all possible subsets is the event space.

Figure 2.12: Given an experiment, we define the collection of all outcomes as the sample space. A
subset in the sample space is called an event. The probability law is a mapping that maps an event to
a number that denotes the size of the event.

A perceptive reader like you may be wondering why we want to complicate things to
this degree when calculating probability is trivial, e.g., throwing a die gives us a probability
1
6 per face. In a simple world where problems are that easy, you can surely ignore all these
complications and proceed to the answer 1

6 . However, modern data analysis is not so easy.
If we are given an image of size 64× 64 pixels, how do we tell whether this image is of a cat
or a dog? We need to construct a probability model that tells us the likelihood of having a
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particular 64 × 64 image. What should be included in this probability model? We need to
know all the possible cases (the sample space), all the possible events (the event space),
and the probability of each of the events (the probability law). If we know all these, then our
decision will be theoretically optimal. Of course, for high-dimensional data like images, we
need approximations to such a probability model. However, we first need to understand the
theoretical foundation of the probability space to know what approximations would make
sense.

2.2.1 Sample space Ω

We start by defining the sample space Ω. Given an experiment, the sample space Ω is the
set containing all possible outcomes of the experiment.

Definition 2.13. A sample space Ω is the set of all possible outcomes from an ex-
periment. We denote ξ as an element in Ω.

A sample space can contain discrete outcomes or continuous outcomes, as shown in
the examples below and Figure 2.13.

Example 2.21: (Discrete Outcomes)

� Coin flip: Ω = {H, T}.
� Throw a die: Ω = { , , , , , }.
� Paper / scissor / stone: Ω = {paper, scissor, stone}.
� Draw an even integer: Ω = {2, 4, 6, 8, . . .}.

Example 2.22: (Continuous Outcomes)

� Waiting time for a bus in West Lafayette: Ω = {t | 0 ≤ t ≤ 30 minutes}.
� Phase angle of a voltage: Ω = {θ | 0 ≤ θ ≤ 2π}.
� Frequency of a pitch: Ω = {f | 0 ≤ f ≤ fmax}.

Figure 2.13 also shows a functional example of the sample space. In this case, the
sample space contains functions. For example,

� Set of all straight lines in 2D:

Ω = {f | f(x) = ax+ b, a, b ∈ R}.

� Set of all cosine functions with a phase offset:

Ω = {f | f(t) = cos(2πω0t+Θ), 0 ≤ Θ ≤ 2π}.

As we see from the above examples, the sample space is nothing but a universal set.
The elements inside the sample space are the outcomes of the experiment. If you change
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Figure 2.13: The sample space can take various forms: it can contain discrete numbers, or continuous
intervals, or even functions.

the experiment, the possible outcomes will be different so that the sample space will be
different. For example, flipping a coin has different possible outcomes from throwing a die.

What if we want to describe a composite experiment where we flip a coin and throw a
die? Here is the sample space:

Example 2.23: If the experiment contains flipping a coin and throwing a die, then
the sample space is{

(H, ), (H, ), (H, ), (H, ), (H, ), (H, ),

(T, ), (T, ), (T, ), (T, ), (T, ), (T, )

}
.

In this sample space, each element is a pair of outcomes.

Practice Exercise 2.8. There are 8 processors on a computer. A computer job sched-
uler chooses one processor randomly. What is the sample space? If the computer job
scheduler can choose two processors at once, what is the sample space then?

Solution. The sample space of the first case is Ω = {1, 2, 3, 4, 5, 6, 7, 8}. The sample
space of the second case is Ω = {(1, 2), (1, 3), (1, 4), . . . , (7, 8)}.

Practice Exercise 2.9. A cell phone tower has a circular average coverage area of
radius of 10 km. We observe the source locations of calls received by the tower. What
is the sample space of all possible source locations?

Solution. Assume that the center of the tower is located at (x0, y0). The sample space
is the set

Ω = {(x, y) |
√
(x− x0)2 + (y − y0)2 ≤ 10}.

Not every set can be a sample space. A sample space must be exhaustive and exclusive.
The term “exhaustive” means that the sample space has to cover all possible outcomes. If
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there is one possible outcome that is left out, then the set is no longer a sample space. The
term “exclusive” means that the sample space contains unique elements so that there is no
repetition of elements.

Example 2.24. (Counterexamples)

The following two examples are NOT sample spaces.

� Throw a die: Ω = {1, 2, 3} is not a sample space because it is not exhaustive.

� Throw a die: Ω = {1, 1, 2, 3, 4, 5, 6} is not a sample space because it is not exclu-
sive.

Therefore, a valid sample space must contain all possible outcomes, and each element
must be unique.

We summarize the concept of a sample space as follows.

What is a sample space Ω?

� A sample space Ω is the collection of all possible outcomes.

� The outcomes can be numbers, alphabets, vectors, or functions. The outcomes
can also be images, videos, EEG signals, audio speeches, etc.

� Ω must be exhaustive and exclusive.

2.2.2 Event space F
The sample space contains all the possible outcomes. However, in many practical situations,
we are not interested in each of the individual outcomes; we are interested in the com-
binations of the outcomes. For example, when throwing a die, we may ask “What is the
probability of rolling an odd number?” or “What is the probability of rolling a number that
is less than 3?” Clearly, “odd number” is not an outcome of the experiment because the
possible outcomes are { , , , , , }. We call “odd number” an event. An event must
be a subset in the sample space.

Definition 2.14. An event E is a subset in the sample space Ω. The set of all possible
events is denoted as F .

While this definition is extremely simple, we need to keep in mind a few facts about events.
First, an outcome ξ is an element in Ω but an event E is a subset contained in Ω, i.e.,
E ⊆ Ω. Thus, an event can contain one outcome but it can also contain many outcomes.
The following example shows a few cases of events:

Example 2.25. Throw a die. Let Ω = { , , , , , }. The following are two pos-
sible events, as illustrated in Figure 2.14.

� E1 = {even numbers} = { , , }.
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� E2 = {less than 3} = { , }.

Figure 2.14: Two examples of events: The first event contains numbers {2, 4, 6}, and the second
event contains numbers {1, 2}.

Practice Exercise 2.10. The “ping” command is used to measure round-trip times
for Internet packets. What is the sample space of all possible round-trip times? What
is the event that a round-trip time is between 10 ms and 20 ms?

Solution. The sample space is Ω = [0,∞). The event is E = [10, 20].

Practice Exercise 2.11. A cell phone tower has a circular average coverage area of
radius 10 km. We observe the source locations of calls received by the tower. What is
the event when the source location of a call is between 2 km and 5 km from the tower?

Solution. Assume that the center of the tower is located at (x0, y0). The event is
E = {(x, y) | 2 ≤

√
(x− x0)2 + (y − y0)2 ≤ 5}.

The second point we should remember is the cardinality of Ω and that of F . A sample
space containing n elements has a cardinality n. However, the event space constructed from
Ω will contain 2n events. To see why this is so, let’s consider the following example.

Example 2.26. Consider an experiment with 3 outcomes Ω = {♣,♡,✠}. We can list
out all the possible events: ∅, {♣}, {♡}, {✠}, {♣,♡}, {♣,✠}, {♡,♣}, {♣,♡,✠}. So
in total there are 23 = 8 possible events. Figure 2.15 depicts the situation. What is
the difference between ♣ and {♣}? The former is an element, whereas the latter is a
set. Thus, {♣} is an event but ♣ is not an event. Why is ∅ an event? Because we can
ask “What is the probability that we get an odd number and an even number?” The
probability is obviously zero, but the reason it is zero is that the event is an empty set.
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Figure 2.15: The event space contains all the possible subsets inside the sample space.

In general, if there are n elements in the sample space, then the number of events
is 2n. To see why this is true, we can assign to each element a binary value: either 0 or 1.
For example, in Table 2.1 we consider throwing a die. For each of the six faces, we assign a
binary code. This will give us a binary string for each event. For example, the event { , }
is encoded as the binary string 100010 because only and are activated. We can count
the total number of unique strings, which is the number of strings that can be constructed
from n bits. It is easily seen that this number is 2n.

Event Binary Code

∅ × × × × × × 000000

{ , } ⃝ × × × ⃝ × 100010

{ , , } × × ⃝ ⃝ ⃝ × 001110
...

...
...

...

{ , , , , } × ⃝ ⃝ ⃝ ⃝ ⃝ 011111

{ , , , , , } ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ 111111

Table 2.1: An event space contains 2n events, where n is the number of elements in the sample space.
To see this, we encode each outcome with a binary code. The resulting binary string then forms a unique
index of the event. Counting the total number of events gives us the cardinality of the event space.

The box below summarizes what you need to know about event spaces.

What is an event space F?
� An event space F is the set of all possible subsets. It is a set of sets.

� We need F because the probability law P is mapping a set to a number. P does
not take an outcome from Ω but a subset inside Ω.
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Event spaces: Some advanced topics

The following discussions can be skipped if it is your first time reading the book.

What else do we need to take care of in order to ensure that an event is well defined? A
few set operations seem to be necessary. For example, if E1 = { } and E2 = { } are events,
it is necessary that E = E1∪E2 = { , } is an event too. Another example: if E1 = { , }
and E2 = { , } are events, then it is necessary that E = E1 ∩ E2 = { } is also an event.
The third example: if E1 = { , , , } is an event, then E = Ec

1 = { , } should be
an event. As you can see, there is nothing sophisticated in these examples. They are just
some basic set operations. We want to ensure that the event space is closed under these
set operations. That is, we do not want to be surprised by finding that a set constructed
from two events is not an event. However, since all set operations can be constructed from
union, intersection and complement, ensuring that the event space is closed under these
three operations effectively ensures that it is closed to all set operations.

The formal way to guarantee these is the notion of a field. This term may seem to be
abstract, but it is indeed quite useful:

Definition 2.15. For an event space F to be valid, F must be a field F . It is a field
if it satisfies the following conditions

� ∅ ∈ F and Ω ∈ F .
� (Closed under complement) If F ∈ F , then also F c ∈ F .
� (Closed under union and intersection) If F1 ∈ F and F2 ∈ F , then F1 ∩ F2 ∈ F
and F1 ∪ F2 ∈ F .

For a finite set, i.e., a set that contains n elements, the collection of all possible subsets
is indeed a field. This is not difficult to see if you consider rolling a die. For example,
if E = { , , , } is inside F , then Ec = { , } is also inside F . This is because F
consists of 2n subsets each being encoded by a unique binary string. So if E = 001111, then
Ec = 110000, which is also in F . Similar reasoning applies to intersection and union.

At this point, you may ask:

� Why bother constructing a field? The answer is that probability is a measure of the
size of a set, so we must input a set to a probability measure P to get a number. The
set being input to P must be a subset inside the sample space; otherwise, it will be
undefined. If we regard P as a mapping, we need to specify the collection of all its
inputs, which is the set of all subsets, i.e., the event space. So if we do not define the
field, there is no way to define the measure P.

� What if the event space is not a field? If the event space is not a field, then we can
easily construct pathological cases where we cannot assign a probability. For example,
if the event space is not a field, then it would be possible that the complement of
E = { , , , } (which is Ec = { , }) is not an event. This just does not make
sense.

The concept of a field is sufficient for finite sample spaces. However, there are two
other types of sample spaces where the concept of a field is inadequate. The first type of
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sets consists of the countably infinite sets, and the second type consists of the sets defined
on the real line. There are other types of sets, but these two have important practical
applications. Therefore, we need to have a basic understanding of these two types.

Sigma-field

The difficulty of a countably infinite set is that there are infinitely many subsets in the field
of a countably infinite set. Having a finite union and a finite intersection is insufficient to
ensure the closedness of all intersections and unions. In particular, having F1 ∪F2 ∈ F does
not automatically give us

⋃∞
n=1 Fn ∈ F because the latter is an infinite union. Therefore,

for countably infinite sets, their requirements to be a field are more restrictive as we need
to ensure infinite intersection and union. The resulting field is called the σ-field.

Definition 2.16. A sigma-field (σ-field) F is a field such that

� F is a field, and

� if F1, F2, . . . ∈ F , then the union
⋃∞

i=1 Fi and the intersection
⋂∞

i=1 Fi are both
in F .

When do we need a σ-field? When the sample space is countable and has infinitely
many elements. For example, if the sample space contains all integers, then the collection
of all possible subsets is a σ-field. For another, if E1 = {2}, E2 = {4}, E3 = {6}, . . . , then⋃∞

n=1 En = {2, 4, 6, 8, . . .} = {positive even numbers}. Clearly, we want
⋃∞

n=1 En to live in
the sample space.

Borel sigma-field

While a sigma-field allows us to consider countable sets of events, it is still insufficient for
considering events defined on the real line, e.g., time, as these events are not countable.
So how do we define an event on the real line? It turns out that we need a different way
to define the smallest unit. For finite sets and countable sets, the smallest units are the
elements themselves because we can count them. For the real line, we cannot count the
elements because any non-empty interval is uncountably infinite.

The smallest unit we use to construct a field for the real line is a semi-closed interval

(−∞, b]
def
= {x | −∞ < x ≤ b}.

The Borel σ-field is defined as the sigma-field generated by the semi-closed inter-
vals.

Definition 2.17. The Borel σ-field B is a σ-field generated from semi-closed intervals:

(−∞, b]
def
= {x | −∞ < x ≤ b}.

The difference between the Borel σ-field B and a regular σ-field is how we measure the
subsets. In a σ-field, we count the elements in the subsets, whereas, in a Borel σ-field, we
use the semi-closed intervals to measure the subsets.
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Being a field, the Borel σ-field is closed under complement, union, and intersection. In
particular, subsets of the following forms are also in the Borel σ-field B:

(a, b), [a, b], (a, b], [a, b), [a,∞), (a,∞), (−∞, b], {b}.

For example, (a,∞) can be constructed from (−∞, a]c, and (a, b] can be constructed by
taking the intersection of (−∞, b] and (a,∞).

Example 2.27: Waiting for a bus. Let Ω = {0 ≤ t ≤ 30}. The Borel σ-field contains
all semi-closed intervals (a, b], where 0 ≤ a ≤ b ≤ 30. Here are two possible events:

� F1 = {less than 10 minutes} = {0 ≤ t < 10} = {0} ∪ ({0 < t ≤ 10} ∩ {10}c).
� F2 = {more than 20 minutes} = {20 < t ≤ 30}.

Further discussion of the Borel σ-field can be found in Leon-Garcia (3rd Edition,)
Chapter 2.9.

This is the end of the discussion. Please join us again.

2.2.3 Probability law P
The third component of a probability space is the probability law P. Its job is to assign a
number to an event.

Definition 2.18. A probability law is a function P : F → [0, 1] of an event E to a
real number in [0, 1].

The probability law is thus a function, and therefore we must specify the input and
the output. The input to P is an event E, which is a subset in Ω and an element in F . The
output of P is a number between 0 and 1, which we call the probability.

The definition above does not specify how an event is being mapped to a number.
However, since probability is a measure of the size of a set, a meaningful P should be
consistent for all events in F . This requires some rules, known as the axioms of probability,
when we define the P. Any probability law P must satisfy these axioms; otherwise, we will
see contradictions. We will discuss the axioms in the next section. For now, let us look at
two examples to make sure we understand the functional nature of P.

Example 2.28. Consider flipping a coin. The event space is F = {∅, {H}, {T},Ω}.
We can define the probability law as

P[∅] = 0, P[{H}] = 1

2
, P[{T}] = 1

2
, P[Ω] = 1,

as shown in Figure 2.16. This P is clearly consistent for all the events in F .
Is it possible to construct an invalid P? Certainly. Consider the following proba-
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bility law:

P[∅] = 0, P[{H}] = 1

3
, P[{T}] = 1

3
, P[Ω] = 1.

This law is invalid because the individual events are P[{H}] = 1
3 and P[{T}] = 1

3
but the union is P[Ω] = 1. To fix this problem, one possible solution is to define the
probability law as

P[∅] = 0, P[{H}] = 1

3
, P[{T}] = 2

3
, P[Ω] = 1.

Then, the probabilities for all the events are well defined and consistent.

Figure 2.16: A probability law is a mapping from an event to a number. A probability law cannot be
arbitrarily assigned; it must satisfy the axioms of probability.

Example 2.29. Consider a sample space containing three elements Ω = {♣,♡,✠}.

The event space is then F =

{
∅, {♣}, {♡}, {✠}, {♣,♡}, {♡,✠}, {♣,✠}, {♣,♡,✠}

}
.

One possible P we could define would be

P[∅] = 0, P[{♣}] = P[{♡}] = P[{✠}] = 1

3
,

P[{♣,♡}] = P[{♣,✠}] = P[{♡,✠}] = 2

3
, P[{♣,♡,✠}] = 1.

What is a probability law P?
� A probability law P is a function.

� It takes a subset (an element in F) and maps it to a number between 0 and 1.

� P is a measure of the size of a set.

� For P to be valid, it must satisfy the axioms of probability.
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Figure 2.17: Probability is a measure of the size of a set. The probability can be a counter that counts
the number of elements, a ruler that measures the length of an interval, or an integration that measures
the area of a region.

A probability law P is a measure

Consider the word “measure” in our slogan: probability is a measure of the size of a set.
Depending on the nature of the set, the measure can be a counter, ruler, scale, or even a
stopwatch. So far, all the examples we have seen are based on sets with a finite number of
elements. For these sets, the natural choice of the probability measure is a counter. However,
if the sets are intervals on the real line or regions in a plane, we need a different probability
law to measure their size. Let’s look at the examples shown in Figure 2.17.

Example 2.30 (Finite Set). Consider throwing a die, so that

Ω = { , , , , , }.

Then the probability measure is a counter that reports the number of elements. If
the die is fair, i.e., all the 6 faces have equal probability of happening, then an event
E = { , } will have a probability P[E] = 2

6 .

Example 2.31 (Intervals). Suppose that the sample space is a unit interval Ω = [0, 1].
Let E be an event such that E = [a, b] where a, b are numbers in [0, 1]. Then the
probability measure is a ruler that measures the length of the intervals. If all the
numbers on the real line have equal probability of appearing, then P[E] = b− a.

Example 2.32 (Regions). Suppose that the sample space is the square Ω = [−1, 1]×
[−1, 1]. Let E be a circle such that E = {(x, y)|x2 + y2 < r2}, where r < 1. Then the
probability measure is an area measure that returns us the area of E. If we assume
that all coordinates in Ω are equally probable, then P[E] = πr2, for r < 1.

Because probability is a measure of the size of a set, two sets can be compared according
to their probability measures. For example, if Ω = {♣,♡,✠}, and if E1 = {♣} and E2 =
{♣,♡}, then one possible P is to assign P[E1] = P[{♣}] = 1

3 and P[E2] = P[{♣,♡}] = 2/3.
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In this particular case, we see that E1 ⊆ E2 and thus

P[E1] ≤ P[E2].

Let’s now consider the term “size.” Notice that the concept of the size of a set is not
limited to the number of elements. A better way to think about size is to imagine that it is
the weight of the set. This might may seem fanciful at first, but it is quite natural. Consider
the following example.

Example 2.33. (Discrete events with different weights) Suppose we have a sample
space Ω = {♣,♡,✠}. Let us assign a different probability to each outcome:

P[{♣}] = 2

6
, P[{♡}] = 1

6
, P[{✠}] = 3

6
.

As illustrated in Figure 2.18, since each outcome has a different weight, when de-
termining the probability of a set of outcomes we can add these weights (instead of
counting the number of outcomes). For example, when reporting P[{♣}] we find its
weight P[{♣}] = 2

6 , whereas when reporting P[{♡,✠}] we find the sum of their weights
P[{♡,✠}] = 1

6 + 3
6 = 4

6 . Therefore, the notion of size does not refer to the number of
elements but to the total weight of these elements.

Figure 2.18: This example shows the “weights” of three elements in a set. The weights are numbers
between 0 and 1 such that the sum is 1. When applying a probability measure to this set, we sum the
weights for the elements in the events being considered. For example, P[♡,✠] = yellow + green, and
P[♣] = purple.

Example 2.34. (Continuous events with different weights) Suppose that the sample
space is an interval, say Ω = [−1, 1]. On this interval we define a weighting function
f(x) where f(x0) specifies the weight for x0. Because Ω is an interval, events defined
on this Ω must also be intervals. For example, we can consider two events E1 = [a, b]

and E2 = [c, d]. The probabilities of these events are P[E1] =
∫ b

a
f(x) dx and P[E2] =∫ d

c
f(x) dx, as shown in Figure 2.19.

Viewing probability as a measure is not just a game for mathematicians; rather, it
has fundamental significance for several reasons. First, it eliminates any dependency on
probability as relative frequency from the frequentist point of view. Relative frequency is a

69



CHAPTER 2. PROBABILITY

Figure 2.19: If the sample space is an interval on the real line, then the probability of an event is the
area under the curve of the weighting function.

narrowly defined concept that is largely limited to discrete events, e.g., flipping a coin. While
we can assign weights to coin-toss events to deal with those biased coins, the extension to
continuous events becomes problematic. By thinking of probability as a measure, we can
generalize the notion to apply to intervals, areas, volumes, and so on.

Second, viewing probability as a measure forces us to disentangle an event from mea-
sures. An event is a subset in the sample space. It has nothing to do with the measure
(e.g., a ruler) you use to measure the event. The measure, on the other hand, specifies the
weighting function you apply to measure the event when computing the probability. For
example, let Ω = [−1, 1] be an interval, and let E = [a, b] be an event. We can define two
weighting functions f(x) and g(x). Correspondingly, we will have two different probability
measures F and G such that

F([a, b]) =
∫
E

dF =

∫ b

a

f(x) dx,

G([a, b]) =

∫
E

dG =

∫ b

a

g(x) dx. (2.20)

To make sense of these notations, consider only P[[a, b]] and not F([a, b]) and G([a, b]). As you
can see, the event for both measures is E = [a, b] but the measures are different. Therefore,
the values of the probability are different.

Example 2.35. (Two probability laws are different if their weighting functions are
different.) Consider two different weighting functions for throwing a die. The first one
assigns probability as the following:

P[{ }] = 1

12
, P[{ }] = 2

12
, P[{ }] = 3

12
,

P[{ }] = 4

12
, P[{ }] = 1

12
, P[{ }] = 1

12
,

whereas the second function assigns the probability like this:

P[{ }] = 2

12
, P[{ }] = 2

12
, P[{ }] = 2

12
,

P[{ }] = 2

12
, P[{ }] = 2

12
, P[{ }] = 2

12
.
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Let an event E = { , }. Let F be the measure using the first set of probabilities, and
let G be the measure of the second set of probabilities. Then,

F(E) = F({ , }) = 1

12
+

2

12
=

3

12
,

G(E) = G({ , }) = 2

12
+

2

12
=

4

12
.

Therefore, although the events are the same, the two different measures will give us
two different probability values.

Remark. The notation
∫
E
dF in Equation (2.20) is known as the Lebesgue integral. You

should be aware of this notation, but the theory of Lebesgue measure is beyond the scope
of this book.

2.2.4 Measure zero sets

Understanding the measure perspective on probability allows us to understand another
important concept of probability, namely measure zero sets. To introduce this concept, we
pose the question: What is the probability of obtaining a single point, say {0.5}, when the
sample space is Ω = [0, 1]?

The answer to this question is rooted in the compatibility between the measure and
the sample space. In other words, the measure has to be meaningful for the events in the
sample space. Using Ω = [0, 1], since Ω is an interval, an appropriate measure would be the
length of this interval. You may add different weighting functions to define your measure,
but ultimately, the measure must be an integral. If you use a “counter” as a measure, then
the counter and the interval are not compatible because you cannot count on the real line.

Now, suppose that we define a measure for Ω = [0, 1] using a weighting function f(x).
This measure is determined by an integration. Then, for E = {0.5}, the measure is

P[E] = P[{0.5}] =
∫ 0.5

0.5

f(x) dx = 0.

In fact, for any weighting function the integral will be zero because the length of the set
E is zero.1 An event that gives us zero probability is known as an event with measure 0.
Figure 2.20 shows an example.

Figure 2.20: The probability of obtaining a single point in a continuous interval is zero.

1We assume that f is continuous throughout [0, 1]. If f is discontinuous at x = 0.5, some additional
considerations will apply.
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What are measure zero sets?

� A set E (non-empty) is called a measure zero set when P[E] = 0.

� For example, {0} is a measure zero set when we use a continuous measure F.
� But {0} can have a positive measure when we use a discrete measure G.

Example 2.36(a). Consider a fair die with Ω = { , , , , , }. Then the set { }
has a probability of 1

6 . The sample space does not have a measure zero event because
the measure we use is a counter.

Example 2.36(b). Consider an interval with Ω = [1, 6]. Then the set {1} has measure
0 because it is an isolated point with respect to the sample space.

Example 2.36(c). For any intervals, P[[a, b]] = P[(a, b)] because the two end points
have measure zero: P[{a}] = P[{b}] = 0.

Formal definitions of measure zero sets

The following discussion of the formal definitions of measure zero sets is optional for the
first reading of this book.

We can formally define measure zero sets as follows:

Definition 2.19. Let Ω be the sample space. A set A ∈ Ω is said to have measure
zero if for any given ϵ > 0,

� There exists a countable number of subsets An such that A ⊆ ∪∞n=1An, and

�
∑∞

n=1 P[An] < ϵ.

You may need to read this definition carefully. Suppose we have an event A. We construct
a set of neighbors A1, . . . , A∞ such that A is included in the union ∪∞n=1An. If the sum of
the all P[An] is still less than ϵ, then the set A will have a measure zero.

To understand the difference between a measure for a continuous set and a countable
set, consider Figure 2.21. On the left side of Figure 2.21 we show an interval Ω in which there
is an isolated point x0. The measure for this Ω is the length of the interval (relative to what-
ever weighting function you use). We define a small neighborhood A0 = (x0 − ϵ

2 , x0 +
ϵ
2 )

surrounding x0. The length of this interval is not more than ϵ. We then shrink ϵ. How-
ever, regardless of how small ϵ is, since x0 is an isolated point, it is always included in the
neighborhood. Therefore, the definition is satisfied, and so {x0} has measure zero.

Example 2.37. Let Ω = [0, 1]. The set {0.5} ⊂ Ω has measure zero, i.e., P[{0.5}] = 0.
To see this, we draw a small interval around 0.5, say [0.5− ϵ/3, 0.5 + ϵ/3]. Inside this
interval, there is really nothing to measure besides the point 0.5. Thus we have found
an interval such that it contains 0.5, and the probability is P[[0.5 − ϵ/3, 0.5 + ϵ/3]] =
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2ϵ/3 < ϵ. Therefore, by definition, the set {0.5} has measure 0.

The situation is very different for the right-hand side of Figure 2.21. Here, the measure
is not the length but a counter. So if we create a neighborhood surrounding the isolated
point x0, we can always make a count. As a result, if you shrink ϵ to become a very small
number (in this case less than 1

4 ), then P[{x0}] < ϵ will no longer be true. Therefore, the
set {x0} has a non-zero measure when we use the counter as the measure.

Figure 2.21: [Left] For a continuous sample space, a single point event {x0} can always be surrounded
by a neighborhood A0 whose size P[A0] < ϵ. [Right] If you change the sample space to discrete
elements, then a single point event {x0} can still be surrounded by a neighborhood A0. However, the
size P[A0] = 1/4 is a fixed number and will not work for any ϵ.

When we make probabilistic claims without considering the measure zero sets, we say
that an event happens almost surely.

Definition 2.20. An event A ∈ R is said to hold almost surely (a.s.) if

P[A] = 1 (2.21)

except for all measure zero sets in R.

Therefore, if a set A contains measure zero subsets, we can simply ignore them because they
do not affect the probability of events. In this book, we will omit “a.s.” if the context is
clear.

Example 2.38(a). Let Ω = [0, 1]. Then P[(0, 1)] = 1 almost surely because the points
0 and 1 have measure zero in Ω.

Example 2.38(b). Let Ω = {x | x2 ≤ 1} and let A = {x | x2 < 1}. Then P[A] = 1
almost surely because the circumference has measure zero in Ω.

Practice Exercise 2.12. Let Ω = {f : R→ [−1, 1] | f(t) = cos(ω0t+ θ)}, where ω0 is
a fixed constant and θ is random. Construct a measure zero event and an almost sure
event.

Solution. Let
E = {f : R→ [−1, 1] | f(t) = cos(ω0t+ kπ/2)}

for any integer k. That is, E contains all the functions with a phase of π/2, 2π/2, 3π/2,
etc. Then E will have measure zero because it is a countable set of isolated functions.
The event Ec will have probability P[Ec] = 1 almost surely because E has measure
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zero.

This is the end of the discussion. Please join us again.

2.2.5 Summary of the probability space

After the preceding long journey through theory, let us summarize.
First, it is extremely important to understand our slogan: probability is a measure of

the size of a set. This slogan is precise, but it needs clarification. When we say probability
is a measure, we are thinking of it as being the probability law P. Of course, in practice, we
always think of probability as the number returned by the measure. However, the difference
is not crucial. Also, “size” not only means the number of elements in the set, but it also
means the relative weight of the set in the sample space. For example, if we use a weight
function to weigh the set elements, then size would refer to the overall weight of the set.

When we put all these pieces together, we can understand why a probability space
must consist of the three components

(Ω,F ,P), (2.22)

where Ω is the sample space that defines all possible outcomes, F is the event space generated
from Ω, and P is the probability law that maps an event to a number in [0, 1]. Can we drop
one or more of the three components? We cannot! If we do not specify the sample space Ω,
then there is no way to define the events. If we do not have a complete event space F ,
then some events will become undefined, and further, if the probability law is applied only
to outcomes, we will not be able to define the probability for events. Finally, if we do not
specify the probability law, then we do not have a way to assign probabilities.

2.3 Axioms of Probability

We now turn to a deeper examination of the properties. Our motivation is simple. While
the definition of probability law has achieved its goal of assigning a probability to an event,
there must be restrictions on how the assignment can be made. For example, if we set
P[{H}] = 1/3, then P[{T}] must be 2/3; otherwise, the sum of having a head and a tail
will be greater than 1. The necessary restrictions on assigning a probability to an event are
collectively known as the axioms of probability.

Definition 2.21. A probability law is a function P : F → [0, 1] that maps an event
A to a real number in [0, 1]. The function must satisfy the axioms of probability:

I. Non-negativity: P[A] ≥ 0, for any A ⊆ Ω.

II. Normalization: P[Ω] = 1.
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III. Additivity: For any disjoint sets {A1, A2, . . .}, it must be true that

P

[ ∞⋃
i=1

Ai

]
=

∞∑
i=1

P[Ai]. (2.23)

An axiom is a proposition that serves as a premise or starting point in a logical system.
Axioms are not definitions, nor are they theorems. They are believed to be true or true
within a certain context. In our case, the axioms are true within the context of Bayesian
probability. The Kolmogorov probability relies on another set of axioms. We will not dive
into the details of these historical issues; in this book, we will confine our discussion to the
three axioms given above.

2.3.1 Why these three probability axioms?

Why do we need three axioms? Why not just two axioms? Why these three particular
axioms? The reasons are summarized in the box below.

Why these three axioms?

� Axiom I (Non-negativity) ensures that probability is never negative.

� Axiom II (Normalization) ensures that probability is never greater than 1.

� Axiom III (Additivity) allows us to add probabilities when two events do not
overlap.

Axiom I is called the non-negativity axiom. It ensures that a probability value cannot
be negative. Non-negativity is a must for probability. It is meaningless to say that the
probability of getting an event is a negative number.

Axiom II is called the normalization axiom. It ensures that the probability of observing
all possible outcomes is 1. This gives the upper limit of the probability. The upper limit
does not have to be 1. It could be 10 or 100. As long as we are consistent about this upper
limit, we are good. However, for historical reasons and convenience, we choose 1 to be the
upper limit.

Axiom III is called the additivity axiom and is the most critical one among the three.
The additivity axiom defines how set operations can be translated into probability oper-
ations. In a nutshell, it says that if we have a set of disjoint events, the probabilities can
be added. From the measure perspective, Axiom III makes sense because if P measures the
size of an event, then two disjoint events should have their probabilities added. If two dis-
joint events do not allow their probabilities to be added, then there is no way to measure
a combined event. Similarly, if the probabilities can somehow be added even for overlap-
ping events, there will be inconsistencies because there is no systematic way to handle the
overlapping regions.

The countable additivity stated in Axiom III can be applied to both a finite number
or an infinite number of sets. The finite case states that for any two disjoint sets A and B,
we have

P[A ∪B] = P[A] + P[B]. (2.24)
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In other words, if A and B are disjoint, then the probability of observing either A or B is
the sum of the two individual probabilities. Figure 2.22 illustrates this idea.

Example 2.39. Let’s see why Axiom III is critical. Consider throwing a fair die with
Ω = { , , , , , }. The probability of getting { , } is

P[{ , }] = P[{ } ∪ { }] = P[{ }] + P[{ }] = 1

6
+

1

6
=

2

6
.

In this equation, the second equality holds because the events { } and { } are disjoint.
If we do not have Axiom III, then we cannot add probabilities.

Figure 2.22: Axiom III says P[A ∪B] = P[A] + P[B] if A ∩B = ∅.

2.3.2 Axioms through the lens of measure

Axioms are “rules” we must abide by when we construct a measure. Therefore, any valid
measure must be compatible with the axioms, regardless of whether we have a weighting
function or not. In the following two examples, we will see how the weighting functions are
used in the axioms.

Example 2.40. Consider a sample space with Ω = {♣,♡,✠}. The probability for
each outcome is

P[{♣}] = 2

6
, P[{♡}] = 1

6
, P[{✠}] = 3

6
.

Suppose we construct two disjoint events E1 = {♣,♡} and E2 = {✠}. Then Axiom
III says

P[E1 ∪ E2] = P[E1] + P[E2] =

(
2

6
+

1

6

)
+

3

6
= 1.

Note that in this calculation, the measure P is still a measure P. If we endow it
with a nonuniform weight function, then P applies the corresponding weights to the
corresponding outcomes. This process is compatible with the axioms. See Figure 2.23
for a pictorial illustration.
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Example 2.41. Suppose the sample space is an interval Ω = [0, 1]. The two events
are E1 = [a, b] and E2 = [c, d]. Assume that the measure P uses a weighting function
f(x). Then, by Axiom III, we know that

P[E1 ∪ E2] = P[E1] + P[E2]

= P[[a, b]] + P[[c, d]] (by Axiom 3)

=

∫ b

a

f(x) dx+

∫ d

c

f(x) dx, (apply the measure).

As you can see, there is no conflict between the axioms and the measure. Figure 2.24
illustrates this example.

Figure 2.23: Applying weighting functions to the measures: Suppose we have three elements in the set.
To compute the probability P[{♡,✠} ∪ {♣}], we can write it as the sum of P[{♡,✠}] and P[{♣}].

Figure 2.24: The axioms are compatible with the measure, even if we use a weighting function.

2.3.3 Corollaries derived from the axioms

The union of A and B is equivalent to the logical operator “OR”. Once the logical operation
“OR” is defined, all other logical operations can be defined. The following corollaries are
examples.

Corollary 2.1. Let A ∈ F be an event. Then,

(a) P[Ac] = 1− P[A].

(b) P[A] ≤ 1.

(c) P[∅] = 0.
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Proof. (a) Since Ω = A∪Ac, by finite additivity we have P[Ω] = P[A∪Ac] = P[A] + P[Ac].
By the normalization axiom, we have P[Ω] = 1. Therefore, P[Ac] = 1− P[A].

(b) We prove by contradiction. Assume P[A] > 1. Consider the complement Ac where
A∪Ac = Ω. Since P[Ac] = 1−P[A], we must have P[Ac] < 0 because by hypothesis P[A] > 1.
But P[Ac] < 0 violates the non-negativity axiom. So we must have P[A] ≤ 1.

(c) Since Ω = Ω ∪ ∅, by the first corollary we have P[∅] = 1− P[Ω] = 0.
□

Corollary 2.2 (Unions of Two Non-Disjoint Sets). For any A and B in F ,

P[A ∪B] = P[A] + P[B]− P[A ∩B]. (2.25)

This statement is different from Axiom III because A and B are not necessarily disjoint.

Figure 2.25: For any A and B, P[A ∪B] = P[A] + P[B]− P[A ∩B].

Proof. First, observe that A ∪B can be partitioned into three disjoint subsets as A ∪B =
(A\B) ∪ (A ∩B) ∪ (B\A). Since A\B = A ∩Bc and B\A = B ∩Ac, by finite additivity we
have that

P[A ∪B] = P[A\B] + P[A ∩B] + P[B\A] = P[A ∩Bc] + P[A ∩B] + P[B ∩Ac]

(a)
= P[A ∩Bc] + P[A ∩B] + P[B ∩Ac] + P[A ∩B]− P[A ∩B]

(b)
= P[A ∩ (Bc ∪B)] + P[(Ac ∪A) ∩B]− P[A ∩B]

= P[A ∩ Ω] + P[Ω ∩B]− P[A ∩B] = P[A] + P[B]− P[A ∩B],

where in (a) we added and subtracted a term P[A∩B], and in (b) we used finite additivity
so that P[A ∩Bc] + P[A ∩B] = P[(A ∩Bc) ∪ (A ∩B)] = P[A ∩ (Bc ∪B)].

□

Example 2.42. The corollary is easy to understand if we consider the following ex-
ample. Let Ω = { , , , , , } be the sample space of a fair die. Let A = { , , }
and B = { , , }. Then

P[A ∪B] = P[{ , , , , }] = 5

6
.
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We can also use the corollary to obtain the same result:

P[A ∪B] = P[A] + P[B]− P[A ∩B]

= P[{ , , }] + P[{ , , }]− P[{ }]

=
3

6
+

3

6
− 1

6
=

5

6
.

Corollary 2.3 (Inequalities). Let A and B be two events in F . Then,

(a) P[A ∪B] ≤ P[A] + P[B]. (Union Bound)

(b) If A ⊆ B, then P[A] ≤ P[B].

Proof. (a) Since P[A∪B] = P[A]+P[B]−P[A∩B] and by non-negativity axiom P[A∩B] ≥ 0,
we must have P[A ∪B] ≤ P[A] + P[B]. (b) If A ⊆ B, then there exists a set B\A such that
B = A∪ (B\A). Therefore, by finite additivity we have P[B] = P[A]+P[B\A] ≥ P[A]. Since
P[B\A] ≥ 0, it follows that P[A] + P[B\A] ≥ P[A]. Thus we have P[B] ≥ P[A].

□
Union bound is a frequently used tool for analyzing probabilities when the intersection

A ∩ B is difficult to evaluate. Part (b) is useful when considering two events of different
“sizes.” For example, in the bus-waiting example, if we let A = {t ≤ 5}, and B = {t ≤ 10},
then P[A] ≤ P[B] because we have to wait for the first 5 minutes to go into the remaining
5 minutes.

Practice Exercise 2.13. Let the events A and B have P[A] = x, P[B] = y and
P[A ∪B] = z. Find the following probabilities: P[A ∩B], P[Ac ∪Bc], and P[A ∩Bc].

Solution.

(a) Note that z = P[A ∪B] = P[A] + P[B]− P[A ∩B]. Thus, P[A ∩B] = x+ y − z.

(b) We can take the complement to obtain the result:

P[Ac ∪Bc] = 1− P[(Ac ∪Bc)c] = 1− P[A ∩B] = 1− x− y + z.

(c) P[A ∩Bc] = P[A]− P[A ∩B] = x− (x+ y − z) = z − y.

Practice Exercise 2.14. Consider a sample space

Ω = {f : R→ R | f(x) = ax, for all a ∈ R, x ∈ R}.

There are two events: A = {f | f(x) = ax, a ≥ 0}, and B = {f | f(x) = ax, a ≤ 0}.
So, basically, A is the set of all straight lines with positive slope, and B is the set of
straight lines with negative slope. Show that the union bound is tight.
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Solution. First of all, we note that

P[A ∪B] = P[A] + P[B]− P[A ∩B].

The intersection is
P[A ∩B] = P[{f | f(x) = 0}].

Since this is a point set in the real line, it has measure zero. Thus, P[A ∩ B] = 0 and
hence P[A ∪B] = P[A] + P[B]. So the union bound is tight.

Closing remark. The development of today’s probability theory is generally credited to
Andrey Kolmogorov’s 1933 book Foundations of the Theory of Probability. We close this
section by citing one of the tables of the book. The table summarizes the correspondence
between set theory and random events.

Theory of sets Random events

A and B are disjoint, i.e., A∩B = ∅ Events A and B are incompatible

A1 ∩A2 · · · ∩AN = ∅ Events A1, . . . , AN are incompatible

A1 ∩A2 · · · ∩AN = X Event X is defined as the simultaneous occur-
rence of events A1, . . . , AN

A1 ∪A2 · · · ∪AN = X EventX is defined as the occurrence of at least
one of the events A1, . . . , AN

Ac The opposite event Ac consisting of the non-
occurrence of event A

A = ∅ Event A is impossible

A = Ω Event A must occur

A1, . . . , AN form a partition of Ω The experiment consists of determining which
of the events A1, . . . , AN occurs

B ⊂ A From the occurrence of event B follows the
inevitable occurrence of A

Table 2.2: Kolmogorov’s summary of set theory results and random events.

2.4 Conditional Probability

In many practical data science problems, we are interested in the relationship between two
or more events. For example, an event A may cause B to happen, and B may cause C
to happen. A legitimate question in probability is then: If A has happened, what is the
probability that B also happens? Of course, if A and B are correlated events, then knowing
one event can tell us something about the other event. If the two events have no relationship,
knowing one event will not tell us anything about the other.

In this section, we study the concept of conditional probability. There are three sub-
topics in this section. We summarize the key points below.

80



2.4. CONDITIONAL PROBABILITY

The three main messages of this section are:

� Section 2.4.1: Conditional probability. Conditional probability of A given B is

P[A|B] = P[A∩B]
P[B] .

� Section 2.4.2: Independence. Two events are independent if the occurrence of
one does not influence the occurrence of the other: P[A|B] = P[A].

� Section 2.4.3: Bayes’ theorem and the law of total probability. Bayes’ theorem
allows us to switch the order of the conditioning: P[A|B] vs. P[B|A], whereas the
law of total probability allows us to decompose an event into smaller events.

2.4.1 Definition of conditional probability

We start by defining conditional probability.

Definition 2.22. Consider two events A and B. Assume P[B] ̸= 0. The conditional
probability of A given B is

P[A |B]
def
=

P[A ∩B]

P[B]
. (2.26)

According to this definition, the conditional probability of A given B is the ratio of
P[A ∩ B] to P[B]. It is the probability that A happens when we know that B has already
happened. Since B has already happened, the event that A has also happened is represented
by A∩B. However, since we are only interested in the relative probability of A with respect
to B, we need to normalize using B. This can be seen by comparing P[A |B] and P[A ∩B]:

P[A |B] =
P[A ∩B]

P[B]
and P[A ∩B] =

P[A ∩B]

P[Ω]
. (2.27)

The difference is illustrated in Figure 2.26: The intersection P[A∩B] calculates the overlap-
ping area of the two events. We make no assumptions about the cause-effect relationship.

Figure 2.26: Illustration of conditional probability and its comparison with P[A ∩B].

What justifies this ratio? Suppose that B has already happened. Then, anything out-
side B will immediately become irrelevant as far as the relationship between A and B is
concerned. So when we ask: “What is the probability that A happens given that B has
happened?”, we are effectively asking for the probability that A ∩ B happens under the
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condition that B has happened. Note that we need to consider A ∩ B because we know
that B has already happened. If we take A only, then there exists a region A\B which
does not contain anything about B. However, since we know that B has happened, A\B is
impossible. In other words, among the elements of A, only those that appear in A ∩ B are
meaningful.

Example 2.43. Let

A = {Purdue gets Big Ten championship},
B = {Purdue wins 15 games consecutively}.

In this example,

P[A] = Prob. that Purdue gets the championship,

P[B] = Prob. that Purdue wins 15 games consecutively,

P[A ∩B] = Prob. that Purdue gets the championship and wins 15 games,

P[A |B] = Prob. that Purdue gets the championship given that

Purdue won 15 games.

If Purdue has won 15 games consecutively, then it is unlikely that Purdue will get
the championship because the sample space of all possible competition results is large.
However, if we have already won 15 games consecutively, then the denominator of the
probability becomes much smaller. In this case, the conditional probability is high.

Example 2.44. Consider throwing a die. Let

A = {getting a 3} and B = {getting an odd number}.

Find P[A |B] and P[B |A].

Solution. The following probabilities are easy to calculate:

P[A] = P[{ }] = 1

6
, and P[B] = P[{ , , }] = 3

6
.

Also, the intersection is

P[A ∩B] = P[{ }] = 1

6
.

Given these values, the conditional probability of A given B can be calculated as

P[A |B] =
P[A ∩B]

P[B]
=

1
6
3
6

=
1

3
.

In other words, if we know that we have an odd number, then the probability of
obtaining a 3 has to be computed over { , , }, which give us a probability 1

3 . If we
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do not know that we have an odd number, then the probability of obtaining a 3 has
to be computed from the sample space { , , , , , }, which will give us 1

6 .

The other conditional probability is

P[B |A] =
P[A ∩B]

P[A]
= 1.

Therefore, if we know that we have rolled a 3, then the probability for this number
being an odd number is 1.

Example 2.45. Consider the situation shown in Figure 2.27. There are 12 points
with equal probabilities of happening. Find the probabilities P[A|B] and P[B|A].

Solution. In this example, we can first calculate the individual probabilities:

P[A] =
5

12
, and P[B] =

6

12
, and P[A ∩B] =

2

12
.

Then the conditional probabilities are

P[A|B] =
P[A ∩B]

P[B]
=

2
12
6
12

=
1

3
,

P[B|A] =
P[A ∩B]

P[A]
=

2
12
5
12

=
2

5
.

Figure 2.27: Visualization of Example 2.45: [Left] All the sets. [Middle] P (A|B) is the ratio between
dots inside the light yellow region over those in yellow, which is 2

6
. [Right] P[A|B] is the ratio between

dots inside the light pink region over those in pink, which is 2
5
.

Example 2.46. Consider a tetrahedral (4-sided) die. Let X be the first roll and Y
be the second roll. Let B be the event that min(X,Y ) = 2 and M be the event that
max(X,Y ) = 3. Find P[M |B].

Solution. As shown in Figure 2.28, the event B is highlighted in green. (Why?)
Similarly, the event M is highlighted in blue. (Again, why?) Therefore, the probability
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is

P[M |B] =
P[M ∩B]

P[B]
=

2
16
5
16

=
2

5
.

Figure 2.28: Visualization of Example 2.46. [Left] Event B. [Middle] Event M . [Right] P(M |B) is the
ratio of the number of blue squares inside the green region to the total number of green squares, which
is 2

5
.

Remark. Notice that if P[B] ≤ P[Ω], then P[A |B] is always larger than or equal to P[A∩B],
i.e.,

P[A|B] ≥ P[A ∩B].

Conditional probabilities are legitimate probabilities

Conditional probabilities are legitimate probabilities. That is, given B, the probability
P[A|B] satisfies Axioms I, II, III.

Theorem 2.6. Let P[B] > 0. The conditional probability P[A |B] satisfies Axioms I,
II, and III.

Proof. Let’s check the axioms:

� Axiom I: We want to show

P[A |B] =
P[A ∩B]

P[B]
≥ 0.

Since P[B] > 0 and Axiom I requires P[A ∩B] ≥ 0, we therefore have P[A |B] ≥ 0.

� Axiom II:

P[Ω |B] =
P[Ω ∩B]

P[B]

=
P[B]

P[B]
= 1.
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� Axiom III: Consider two disjoint sets A and C. Then,

P[A ∪ C |B] =
P[(A ∪ C) ∩B]

P[B]

=
P[(A ∩B) ∪ (C ∩B)]

P[B]

(a)
=

P[A ∩B]

P[B]
+

P[C ∩B]

P[B]

= P[A|B] + P[C|B],

where (a) holds because if A and C are disjoint then (A ∩B) ∩ (C ∩B) = ∅.

□
To summarize this subsection, we highlight the essence of conditional probability.

What are conditional probabilities?

� Conditional probability of A given B is the ratio P[A∩B]
P[B] .

� It is again a measure. It measures the relative size of A inside B.

� Because it is a measure, it must satisfy the three axioms.

2.4.2 Independence

Conditional probability deals with situations where two events A and B are related. What
if the two events are unrelated? In probability, we have a technical term for this situation:
statistical independence.

Definition 2.23. Two events A and B are statistically independent if

P[A ∩B] = P[A]P[B]. (2.28)

Why define independence in this way? Recall that P[A |B] = P[A∩B]
P[B] . If A and B are

independent, then P[A ∩B] = P[A]P[B] and so

P[A |B] =
P[A ∩B]

P[B]
=

P[A] P[B]

P[B]
= P[A]. (2.29)

This suggests an interpretation of independence: If the occurrence of B provides no addi-
tional information about the occurrence of A, then A and B are independent.

Therefore, we can define independence via conditional probability:

Definition 2.24. Let A and B be two events such that P[A] > 0 and P[B] > 0. Then
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A and B are independent if

P[A |B] = P[A] or P[B |A] = P[B]. (2.30)

The two statements are equivalent as long as P[A] > 0 and P[B] > 0. This is because
P[A|B] = P[A ∩ B]/P[B]. If P[A|B] = P[A] then P[A ∩ B] = P[A]P[B], which implies that
P[B|A] = P[A ∩B]/P[A] = P[B].

A pictorial illustration of independence is given in Figure 2.29. The key message is that
if two events A and B are independent, then P[A|B] = P[A]. The conditional probability
P[A|B] is the ratio of P[A ∩ B] over P[B], which is the intersection over B (the blue set).
The probability P[A] is the yellow set over the sample space Ω.

Figure 2.29: Independence means that the conditional probability P[A|B] is the same as P[A]. This
implies that the ratio of P[A ∩B] over P[B], and the ratio of P[A ∩ Ω] over P[Ω] are the same.

Disjoint versus independent

Disjoint ⇎ Independent. (2.31)

The statement says that disjoint and independent are two completely different concepts.
If A and B are disjoint, then A ∩ B = ∅. This only implies that P[A ∩ B] = 0.

However, it says nothing about whether P[A ∩ B] can be factorized into P[A]P[B]. If A
and B are independent, then we have P[A ∩ B] = P[A]P[B]. But this does not imply that
P[A∩B] = 0. The only condition under which Disjoint⇔ Independence is when P[A] = 0 or
P[B] = 0. Figure 2.30 depicts the situation. When two sets are independent, the conditional
probability (which is a ratio) remains unchanged compared to unconditioned probability.
When two sets are disjoint, they simply do not overlap.

Practice Exercise 2.15. Throw a die twice. Are A and B independent, where

A = {1st die is 3} and B = {2nd die is 4}.

Solution. We can show that

P[A ∩B] = P[(3, 4)] = 1
36 , P[A] = 1

6 , and P[B] = 1
6 .

So P[A ∩B] = P[A]P[B]. Thus, A and B are independent.
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Figure 2.30: Independent means that the conditional probability, which is a ratio, is the same as the
unconditioned probability. Disjoint means that the two sets do not overlap.

Figure 2.31: The two events A and B are independent because P[A] = 1
6
and P[A|B] = 1

6
.

A pictorial illustration of this example is shown in Figure 2.31. The two events are
independent because A is one row in the 2D space, which yields a probability of 1

6 . The
conditional probability P[A|B] is the coordinate (3, 4) over the event B, which is a column.
It happens that P[A|B] = 1

6 . Thus, the two events are independent.

Practice Exercise 2.16. Throw a die twice. Are A and B independent?

A = {1st die is 3} and B = {sum is 7}.

Solution. Note that

P[A ∩B] = P[(3, 4)] = 1
36 , P[A] = 1

6 ,

P[B] = P[(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)] = 1
6 .

So P[A ∩B] = P[A]P[B]. Thus, A and B are independent.

A pictorial illustration of this example is shown in Figure 2.32. Notice that whether the
two events intersect is not how we determine independence (that only determines disjoint or
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not). The key is whether the conditional probability (which is the ratio) remains unchanged
compared to the unconditioned probability.

Figure 2.32: The two events A and B are independent because P[A] = 1
6
and P[A ∩B] = 1

6
.

If we let B = {sum is 8}, then the situation is different. The intersection A ∩B has a
probability 1

5 relative to B, and therefore P[A|B] = 1
5 . Hence, the two events A and B are

dependent. If you like a more intuitive argument, you can imagine that B has happened,
i.e., the sum is 8. Then the probability for the first die to be 1 is 0 because there is no way
to construct 8 when the first die is 1. As a result, we have eliminated one choice for the first
die, leaving only five options. Therefore, since B has influenced the probability of A, they
are dependent.

Practice Exercise 2.17. Throw a die twice. Let

A = {max is 2} and B = {min is 2}.

Are A and B independent?

Solution. Let us first list out A and B:

A = {(1, 2), (2, 1), (2, 2)},
B = {(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 2), (4, 2), (5, 2), (6, 2)}.

Therefore, the probabilities are

P[A] =
3

36
, P[B] =

9

36
, and P[A ∩B] = P[(2, 2)] =

1

36
.

Clearly, P[A ∩B] ̸= P[A]P[B] and so A and B are dependent.

What is independence?

� Two events are independent when the ratio P[A ∩B]/P[B] remains unchanged
compared to P[A].

� Independence ̸= disjoint.
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2.4.3 Bayes’ theorem and the law of total probability

Theorem 2.7 (Bayes’ theorem). For any two events A and B such that P[A] > 0
and P[B] > 0,

P[A |B] =
P[B |A]P[A]

P[B]
.

Proof. By the definition of conditional probabilities, we have

P[A |B] =
P[A ∩B]

P[B]
and P[B |A] =

P[B ∩A]

P[A]
.

Rearranging the terms yields

P[A |B]P[B] = P[B |A]P[A],

which gives the desired result by dividing both sides by P[B].
□

Bayes’ theorem provides two views of the intersection P[A∩B] using two different con-
ditional probabilities. We call P[B |A] the conditional probability and P[A |B] the posterior
probability. The order of A and B is arbitrary. We can also call P[A |B] the conditional
probability and P[B |A] the posterior probability. The context of the problem will make this
clear.

Bayes’ theorem provides a way to switch P[A|B] and P[B|A]. The next theorem helps
us decompose an event into smaller events.

Theorem 2.8 (Law of Total Probability). Let {A1, . . . , An} be a partition of Ω, i.e.,
A1, . . . , An are disjoint and Ω = A1 ∪ · · · ∪An. Then, for any B ⊆ Ω,

P[B] =

n∑
i=1

P[B |Ai] P[Ai]. (2.32)

Proof. We start from the right-hand side.

n∑
i=1

P[B |Ai] P[Ai]
(a)
=

n∑
i=1

P[B ∩Ai]
(b)
= P

[
n⋃

i=1

(B ∩Ai)

]
(c)
= P

[
B ∩

(
n⋃

i=1

Ai

)]
(d)
= P[B ∩ Ω] = P[B],

where (a) follows from the definition of conditional probability, (b) is due to Axiom III, (c)
holds because of the distributive property of sets, and (d) results from the partition property
of {A1, A2, . . . , An}.

□

Interpretation. The law of total probability can be understood as follows. If the sample
space Ω consists of disjoint subsets A1, . . . , An, we can compute the probability P[B] by
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summing over its portion P[B∩A1], . . . ,P[B∩An]. However, each intersection can be written
as

P[B ∩Ai] = P[B |Ai]P[Ai]. (2.33)

In other words, we write P[B ∩ Ai] as the conditional probability P[B |Ai] times the prior
probability P[Ai]. When we sum all these intersections, we obtain the overall probability.
See Figure 2.33 for a graphical portrayal.

Figure 2.33: The law of total probability decomposes the probability P[B] into multiple conditional
probabilities P[B |Ai]. The probability of obtaining each P[B |Ai] is P[Ai].

Corollary 2.4. Let {A1, A2, . . . , An} be a partition of Ω, i.e., A1, . . . , An are disjoint
and Ω = A1 ∪A2 ∪ · · · ∪An. Then, for any B ⊆ Ω,

P[Aj |B] =
P[B |Aj ] P[Aj ]∑n
i=1 P[B |Ai] P[Ai]

. (2.34)

Proof. The result follows directly from Bayes’ theorem:

P[Aj |B] =
P[B |Aj ]P[Aj ]

P[B]
=

P[B |Aj ]P[Aj ]∑n
i=1 P[B |Ai] P[Ai]

.

□

Example 2.47. Suppose there are three types of players in a tennis tournament: A,
B, and C. Fifty percent of the contestants in the tournament are A players, 25% are
B players, and 25% are C players. Your chance of beating the contestants depends on
the class of the player, as follows:

0.3 against an A player

0.4 against a B player

0.5 against a C player

If you play a match in this tournament, what is the probability of your winning the
match? Supposing that you have won a match, what is the probability that you played
against an A player?

Solution. We first list all the known probabilities. We know from the percentage

90



2.4. CONDITIONAL PROBABILITY

of players that

P[A] = 0.5, P[B] = 0.25, P[C] = 0.25.

Now, let W be the event that you win the match. Then the conditional probabilities
are defined as follows:

P[W |A] = 0.3, P[W |B] = 0.4, P[W |C] = 0.5.

Therefore, by the law of total probability, we can show that the probability of
winning the match is

P[W ] = P[W |A]P[A] + P[W |B]P[B] + P[W |C]P[C]

= (0.3)(0.5) + (0.4)(0.25) + (0.5)(0.25) = 0.375.

Given that you have won the match, the probability of A given W is

P[A|W ] =
P[W |A]P[A]

P[W ]
=

(0.3)(0.5)

0.375
= 0.4.

Example 2.48. Consider the communication channel shown below. The probability
of sending a 1 is p and the probability of sending a 0 is 1− p. Given that 1 is sent, the
probability of receiving 1 is 1− η. Given that 0 is sent, the probability of receiving 0
is 1− ε. Find the probability that a 1 has been correctly received.

Solution. Define the events

S0 = “0 is sent”, and R0 = “0 is received”.

S1 = “1 is sent”, and R1 = “1 is received”.

Then, the probability that 1 is received is P[R1]. However, P[R1] ̸= 1−η because 1−η
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is the conditional probability that 1 is received given that 1 is sent. It is possible that
we receive 1 as a result of an error when 0 is sent. Therefore, we need to consider the
probability that both S0 and S1 occur. Using the law of total probability we have

P[R1] = P[R1 |S1] P[S1] + P[R1 |S0] P[S0]

= (1− η)p+ ε(1− p).

Now, suppose that we have received 1. What is the probability that 1 was origi-
nally sent? This is asking for the posterior probability P[S1 |R1], which can be found
using Bayes’ theorem

P[S1 |R1] =
P[R1 |S1] P[S1]

P[R1]
=

(1− η)p

(1− η)p+ ε(1− p)
.

When do we need to use Bayes’ theorem and the law of total probability?

� Bayes’ theorem switches the role of the conditioning, from P[A|B] to P[B|A].

Example:

P[win the game | play with A] and P[play with A | win the game].

� The law of total probability decomposes an event into smaller events.

Example:
P[win] = P[win | A]P[A] + P[win | B]P[B].

2.4.4 The Three Prisoners problem

Now that you are familiar with the concepts of conditional probabilities, we would like to
challenge you with the following problem, known as the Three Prisoners problem. If you
understand how this problem can be resolved, you have mastered conditional probability.

Once upon a time, there were three prisoners A, B, and C. One day, the king decided
to pardon two of them and sentence the last one, as in this figure:

Figure 2.34: The Three Prisoners problem: The king says that he will pardon two prisoners and sentence
one.

One of the prisoners, prisoner A, heard the news and wanted to ask a friendly guard
about his situation. The guard was honest. He was allowed to tell prisoner A that prisoner B
would be pardoned or that prisoner C would be pardoned, but he could not tell A whether
he would be pardoned. Prisoner A thought about the problem, and he began to hesitate to
ask the guard. Based on his present state of knowledge, his probability of being pardoned
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is 2
3 . However, if he asks the guard, this probability will be reduced to 1

2 because the guard
would tell him that one of the two other prisoners would be pardoned, and would tell him
which one it would be. Prisoner A reasons that his chance of being pardoned would then
drop because there are now only two prisoners left who may be pardoned, as illustrated in
Figure 2.35:

Figure 2.35: The Three Prisoners problem: If you do not ask the guard, your chance of being released
is 2/3. If you ask the guard, the guard will tell you which one of the other prisoners will be released.
Your chance of being released apparently drops to 1/2.

Should prisoner A ask the guard? What has gone wrong with his reasoning? This
problem is tricky in the sense that the verbal argument of prisoner A seems flawless. If
he asked the guard, indeed, the game would be reduced to two people. However, this does
not seem correct, because regardless of what the guard says, the probability for A to be
pardoned should remain unchanged. Let’s see how we can solve this puzzle.

Let XA, XB , XC be the events of sentencing prisoners A, B, C, respectively. Let GB

be the event that the guard says that the prisoner B is released. Without doing anything,
we know that

P[XA] =
1

3
, P[XB ] =

1

3
, P[XC ] =

1

3
.

Conditioned on these events, we can compute the following conditional probabilities that
the guard says B is pardoned:

P[GB | XA] =
1

2
, P[GB | XB ] = 0, P[GB | XC ] = 1.

Why are these conditional probabilities? P[GB | XB ] = 0 quite straightforward. If the king
decides to sentence B, the guard has no way of saying that B will be pardoned. Therefore,
P[GB | XB ] must be zero. P[GB | XC ] = 1 is also not difficult. If the king decides to
sentence C, then the guard has no way to tell you that B will be pardoned because the
guard cannot say anything about prisoner A. Finally, P[GB | XA] =

1
2 can be understood

as follows: If the king decides to sentence A, the guard can either tell you B or C. In other
words, the guard flips a coin.

With these conditional probabilities ready, we can determine the probability. This is the
conditional probability P[XA | GB ]. That is, supposing that the guard says B is pardoned,
what is the probability that A will be sentenced? This is the actual scenario that A is facing.
Solving for this conditional probability is not difficult. By Bayes’ theorem we know that

P[XA | GB ] =
P[GB | XA]P[XA]

P[GB ]
,
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and P[GB ] = P[GB |XA]P[XA] + P[GB |XB ]P[XB ] + P[GB |XC ]P[XC ] according to the law of
total probability. Substituting the numbers into these equations, we have that

P[GB ] = P[GB |XA]P[XA] + P[GB |XB ]P[XB ] + P[GB |XC ]P[XC ]

=
1

2
× 1

3
+ 0× 1

3
+ 1× 1

3
=

1

2
,

P[XA | GB ] =
P[GB | XA]P[XA]

P[GB ]
=

1
2 ×

1
3

1
2

=
1

3
.

Therefore, given that the guard says B is pardoned, the probability that A will be sentenced
remains 1

3 . In fact, what you can show in this example is that P[XA | GB ] =
1
3 = P[XA].

Therefore, the presence or absence of the guard does not alter the probability. This is because
what the guard says is independent of whether the prisoners will be pardoned. The lesson
we learn from this problem is not to rely on verbal arguments. We need to write down the
conditional probabilities and spell out the steps.

Figure 2.36: The Three Prisoners problem is resolved by noting that P[XA|GB ] = P[XA]. Therefore,
the events XA and GB are independent.

How to resolve the Three Prisoners problem?

� The key is that GA, GB , GC do not form a partition. See Figure 2.36.

� GB ̸= XB . When GB happens, the remaining set is not XA ∪XC .

� The ratio P[XA ∩GB ]/P[GB ] equals P[XA]. This is independence.
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2.5 Summary

By now, we hope that you have become familiar with our slogan probability is a measure
of the size of a set. Let us summarize:

� Probability = a probability law P. You can also view it as the value returned by P.
� Measure = a ruler, a scale, a stopwatch, or another measuring device. It is a tool that
tells you how large or small a set is. The measure has to be compatible with the set.
If a set is finite, then the measure can be a counter. If a set is a continuous interval,
then the measure can be the length of the interval.

� Size = the relative weight of the set for the sample space. Measuring the size is done
by using a weighting function. Think of a fair coin versus a biased coin. The former
has a uniform weight, whereas the latter has a nonuniform weight.

� Set = an event. An event is a subset in the sample space. A probability law P always
maps a set to a number. This is different from a typical function that maps a number
to another number.

If you understand what this slogan means, you will understand why probability can be
applied to discrete events, continuous events, events in n-D spaces, etc. You will also under-
stand the notion of measure zero and the notion of almost sure. These concepts lie at the
foundation of modern data science, in particular, theoretical machine learning.

The second half of this chapter discusses the concept of conditional probability. Con-
ditional probability is a metaconcept that can be applied to any measure you use. The
motivation of conditional probability is to restrict the probability to a subevent happening
in the sample space. If B has happened, the probability for A to also happen is P[A∩B]/P[B].
If two events are not influencing each other, then we say that A and B are independent.
According to Bayes’ theorem, we can also switch the order of A given B and B given A, ac-
cording to Bayes’ theorem. Finally, the law of total probability gives us a way to decompose
events into subevents.

We end this chapter by mentioning a few terms related to conditional probabilities
that will become useful later. Let us use the tennis tournament as an example:

� P[W |A] = conditional probability = Given that you played with player A, what is
the probability that you will win?

� P[A] = prior probability = Without even entering the game, what is the chance that
you will face player A?

� P[A |W ] = posterior probability = After you have won the game, what is the proba-
bility that you have actually played with A?

In many practical engineering problems, the question of interest is often the last one. That
is, supposing that you have observed something, what is the most likely cause of that event?
For example, supposing we have observed this particular dataset, what is the best Gaussian
model that would fit the dataset? Questions like these require some analysis of conditional
probability, prior probability, and posterior probability.
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2.7 Problems

Exercise 1.
A space S and three of its subsets are given by S = {1, 3, 5, 7, 9, 11}, A = {1, 3, 5}, B =
{7, 9, 11}, and C = {1, 3, 9, 11}. Find A ∩B ∩ C, Ac ∩B, A− C, and (A−B) ∪B.

Exercise 2.
Let A = (−∞, r] and B = (−∞, s] where r ≤ s. Find an expression for C = (r, s] in terms
of A and B. Show that B = A ∪ C, and A ∩ C = ∅.

Exercise 3. (Video Solution)
Simplify the following sets.

(a) [1, 4] ∩ ([0, 2] ∪ [3, 5])

(b) ([0, 1] ∪ [2, 3])c

(c)
⋂∞

i=1(−1/n,+1/n)

(d)
⋃∞

i=1[5, 8− (2n)−1]

Exercise 4.
We will sometimes deal with the relationship between two sets. We say that A implies B
when A is a subset of B (why?). Show the following results.

(a) Show that if A implies B, and B implies C, then A implies C.

(b) Show that if A implies B, then Bc implies Ac.

Exercise 5.
Show that if A ∪B = A and A ∩B = A, then A = B.

Exercise 6.
A space S is defined as S = {1, 3, 5, 7, 9, 22}, and three subsets as A = {1, 3, 5}, B =
{7, 9, 11}, C = {1, 3, 9, 11}. Assume that each element has probability 1/6. Find the following
probabilities:

(a) P[A]

(b) P[B]

(c) P[C]

(d) P[A ∪B]

(e) P[A ∪ C]

(f) P[(A\C) ∪B]
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Exercise 7. (Video Solution)
A collection of 26 letters, a-z, is mixed in a jar. Two letters are drawn at random, one after
the other. What is the probability of drawing a vowel (a,e,i,o,u) and a consonant in either
order? What is the sample space?

Exercise 8.
Consider an experiment consisting of rolling a die twice. The outcome of this experiment is
an ordered pair whose first element is the first value rolled and whose second element is the
second value rolled.

(a) Find the sample space.

(b) Find the set A representing the event that the value on the first roll is greater than
or equal to the value on the second roll.

(c) Find the set B corresponding to the event that the first roll is a six.

(d) Let C correspond to the event that the first valued rolled and the second value rolled
differ by two. Find A ∩ C.

Note that A, B, and C should be subsets of the sample space specified in Part (a).

Exercise 9.
A pair of dice are rolled.

(a) Find the sample space Ω

(b) Find the probabilities of the events: (i) the sum is even, (ii) the first roll is equal to
the second, (iii) the first roll is larger than the second.

Exercise 10.
Let A, B and C be events in an event space. Find expressions for the following:

(a) Exactly one of the three events occurs.

(b) Exactly two of the events occurs.

(c) Two or more of the events occur.

(d) None of the events occur.

Exercise 11.
A system is composed of five components, each of which is either working or failed. Consider
an experiment that consists of observing the status of each component, and let the outcomes
of the experiment be given by all vectors (x1, x2, x3, x4, x5), where xi is 1 if component i is
working and 0 if component i is not working.

(a) How many outcomes are in the sample space of this experiment?

(b) Suppose that the system will work if components 1 and 2 are both working, or if
components 3 and 4 are both working, or if components 1, 3, and 5 are all working.
Let W be the event that the system will work. Specify all of the outcomes in W .
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(c) Let A be the event that components 4 and 5 have both failed. How many outcomes
are in the event A?

(d) Write out all outcomes in the event A ∩W .

Exercise 12. (Video Solution)
A number x is selected at random in the interval [−1, 2]. Let the events A = {x |x < 0},
B = {x | |x − 0.5| < 0.5}, C = {x |x > 0.75}. Find (a) P[A |B], (b) P[B |C], (c) P[A |Cc],
(d) P[B |Cc].

Exercise 13. (Video Solution)
Let the events A and B have P[A] = x, P[B] = y and P[A ∪ B] = z. Find the following
probabilities: (a) P[A ∩B], (b) P[Ac ∩Bc], (c) P[Ac ∪Bc], (d) P[A ∩Bc], (e) P[Ac ∪B].

Exercise 14.

(a) By using the fact that P[A∪B] ≤ P[A]+P[B], show that P[A∪B∪C] ≤ P[A]+P[B]+
P[C].

(b) By using the fact that P [
⋃n

k=1 Ak] ≤
∑n

k=1 P[Ak], show that

P

[
n⋂

k=1

Ak

]
≥ 1−

n∑
k=1

P[Ac
k].

Exercise 15.
Use the distributive property of set operations to prove the following generalized distributive
law:

A ∪

(
n⋂

i=1

Bi

)
=

n⋂
i=1

(A ∪Bi) .

Hint: Use mathematical induction. That is, show that the above is true for n = 2 and that
it is also true for n = k + 1 when it is true for n = k.

Exercise 16.
The following result is known as the Bonferroni’s Inequality.

(a) Prove that for any two events A and B, we have

P(A ∩B) ≥ P(A) + P(B)− 1.

(b) Generalize the above to the case of n events A1, A2, . . . , An, by showing that

P(A1 ∩A2 ∩ · · · ∩An) ≥ P(A1) + P(A2) + · · ·+ P(An)− (n− 1).

Hint: You may use the generalized Union Bound P(
⋃n

i=1 Ai) ≤
∑n

i=1 P(Ai).

Exercise 17. (Video Solution)
Let A, B, C be events with probabilities P[A] = 0.5, P[B] = 0.2, P[C] = 0.4. Find
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(a) P[A ∪B] if A and B are independent.

(b) P[A ∪B] if A and B are disjoint.

(c) P[A ∪B ∪ C] if A, B and C are independent.

(d) P[A ∪B ∪ C] if A, B and C are pairwise disjoint; can this happen?

Exercise 18. (Video Solution)
A block of information is transmitted repeated over a noisy channel until an error-free block
is received. Let M ≥ 1 be the number of blocks required for a transmission. Define the
following sets.

(i) A = {M is even}

(ii) B = {M is a multiple of 3}

(iii) C = {M is less than or equal to 6}

Assume that the probability of requiring one additional block is half of the probability
without the additional block. That is:

P[M = k] =

(
1

2

)k

, k = 1, 2, . . . .

Determine the following probabilities.

(a) P[A], P[B], P[C], P[Cc]

(b) P[A ∩B], P[A\B], P[A ∩B ∩ C]

(c) P[A |B], P[B |A]

(d) P[A |B ∩ C], P[A ∩B |C]

Exercise 19. (Video Solution)
A binary communication system transmits a signal X that is either a +2-voltage signal or
a −2-voltage signal. A malicious channel reduces the magnitude of the received signal by
the number of heads it counts in two tosses of a coin. Let Y be the resulting signal. Possible
values of Y are listed below.

2 Heads 1 Head No Head
X = −2 Y = 0 Y = −1 Y = −2
X = +2 Y = 0 Y = +1 Y = +2

Assume that the probability of having X = +2 and X = −2 is equal.

(a) Find the sample space of Y , and hence the probability of each value of Y .

(b) What are the probabilities P[X = +2 |Y = 1] and P[Y = 1 |X = −2]?

Exercise 20. (Video Solution)
A block of 100 bits is transmitted over a binary communication channel with a probability
of bit error p = 10−2.
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(a) If the block has 1 or fewer errors, then the receiver accepts the block. Find the prob-
ability that the block is accepted.

(b) If the block has more than 1 error, then the block is retransmitted. What is the
probability that 4 blocks are transmitted?

Exercise 21. (Video Solution)
A machine makes errors in a certain operation with probability p. There are two types of
errors. The fraction of errors that are type A is α and the fraction that are type B is 1−α.

(a) What is the probability of k errors in n operations?

(b) What is the probability of k1 type A errors in n operations?

(c) What is the probability of k2 type B errors in n operations?

(d) What is the joint probability of k1 type A errors and k2 type B errors in n operations?
Hint: There are

(
n
k1

)(
n−k1

k2

)
possibilities of having k1 type A errors and k2 type B errors

in n operations. (Why?)

Exercise 22. (Video Solution)
A computer manufacturer uses chips from three sources. Chips from sources A, B and C
are defective with probabilities 0.005, 0.001 and 0.01, respectively. The proportions of chips
from A, B and C are 0.5, 0.1 and 0.4 respectively. If a randomly selected chip is found to
be defective, find

(a) the probability that the chips are from A.

(b) the probability that the chips are from B.

(c) the probability that the chips are from C.

Exercise 23. (Video Solution)
In a lot of 100 items, 50 items are defective. Suppose that m items are selected for testing.
We say that the manufacturing process is malfunctioning if the probability that one or more
items are tested to be defective. Call this failure probability p. What should be the minimum
m such that p ≥ 0.99?

Exercise 24. (Video Solution)
One of two coins is selected at random and tossed three times. The first coin comes up heads
with probability p1 = 1/3 and the second coin with probability p2 = 2/3.

(a) What is the probability that the number of heads is k = 3?

(b) Repeat (a) for k = 0, 1, 2.

(c) Find the probability that coin 1 was tossed given that k heads were observed, for
k = 0, 1, 2, 3.

(d) In part (c), which coin is more probably when 2 heads have been observed?

101



CHAPTER 2. PROBABILITY

Exercise 25. (Video Solution)
Consider the following communication channel. A source transmits a string of binary symbols
through a noisy communication channel. Each symbol is 0 or 1 with probability p and
1− p, respectively, and is received incorrectly with probability ε0 and ε1. Errors in different
symbols transmissions are independent.

Denote S as the source and R as the receiver.

(a) What is the probability that a symbol is correctly received? Hint: Find

P[R = 1 ∩ S = 1] and P[R = 0 ∩ S = 0].

(b) Find the probability of receiving 1011 conditioned on that 1011 was sent, i.e.,

P[R = 1011 |S = 1011].

(c) To improve reliability, each symbol is transmitted three times, and the received
string is decoded by the majority rule. In other words, a 0 (or 1) is transmitted as
000 (or 111, respectively), and it is decoded at the receiver as a 0 (or 1) if and only if
the received three-symbol string contains at least two 0s (or 1s, respectively). What
is the probability that the symbol is correctly decoded, given that we send a 0?

(d) Suppose that the scheme of part (c) is used. What is the probability that a 0 was
sent if the string 101 was received?

(e) Suppose the scheme of part (c) is used and given that a 0 was sent. For what value of
ε0 is there an improvement in the probability of correct decoding? Assume that
ε0 ̸= 0.
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Chapter 3

Discrete Random Variables

When working on a data analysis problem, one of the biggest challenges is the disparity
between the theoretical tools we learn in school and the actual data our boss hands to us.
By actual data, we mean a collection of numbers, perhaps organized or perhaps not. When
we are given the dataset, the first thing we do would certainly not be to define the Borel
σ-field and then define the measure. Instead, we would normally compute the mean, the
standard deviation, and perhaps some scores about the skewness.

The situation is best explained by the landscape shown in Figure 3.1. On the one hand,
we have well-defined probability tools, but on the other hand, we have a set of practical
“battle skills” for processing data. Often we view them as two separate entities. As long as
we can pull the statistics from the dataset, why bother about the theory? Alternatively, we
have a set of theories, but we will never verify them using the actual datasets. How can we
bridge the two? What are the missing steps in the probability theory we have learned so
far? The goal of this chapter (and the next) is to fill this gap.

Figure 3.1: The landscape of probability and data. Often we view probability and data analysis as two
different entities. However, probability and data analysis are inseparable. The goal of this chapter is to
link the two.

Three concepts to bridge the gap between theory and practice

The starting point of our discussion is a probability space (Ω,F ,P). It is an abstract concept,
but we hope we have convinced you in Chapter 2 of its significance. However, the probability
space is certainly not “user friendly” because no one would write a Python program to
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implement those theories. How do we make the abstract probability space more convenient
so that we can model practical scenarios?

The first step is to recognize that the sample space and the event space are all based
on statements, for example, “getting a head when flipping a coin” or “winning the game.”
These statements are not numbers, but we (engineers) love numbers. Therefore, we should
ask a very basic question: How do we convert a statement to a number? The answer is the
concept of random variables.

Key Concept 1: What are random variables?

Random variables are mappings from events to numbers.

Now, suppose that we have constructed a random variable that translates statements to
numbers. The next task is to endow the random variable with probabilities. More precisely,
we need to assign probabilities to the random variable so that we can perform computations.
This is done using the concept called probability mass function (PMF).

Key Concept 2: What are probability mass functions (PMFs)?

Probability mass functions are the ideal histograms of random variables.

The best way to think about a PMF is a histogram, something we are familiar with.
A histogram has two axes: The x-axis denotes the set of states and the y-axis denotes
the probability. For each of the states that the random variable possesses, the histogram
tells us the probability of getting a particular state. The PMF is the ideal histogram of a
random variable. It provides a complete characterization of the random variable. If you have
a random variable, you must specify its PMF. Vice versa, if you tell us the PMF, you have
specified a random variable.

We ask the third question about pulling information from the probability mass func-
tion, such as the mean and standard deviation. How do we obtain these numbers from the
PMF? We are also interested in operations on the mean and standard deviations. For ex-
ample, if a professor offers ten bonus points to the entire class, how will it affect the mean
and standard deviation? If a store provides 20% off on all its products, what will happen to
its mean retail price and standard deviation? However, the biggest question is perhaps the
difference between the mean we obtain from a PMF and the mean we obtain from a his-
togram. Understanding this difference will immediately help us build a bridge from theory
to practice.

Key Concept 3: What is expectation?

Expectation = Mean = Average computed from a PMF.

Organization of this chapter

The plan for this chapter is as follows. We will start with the basic concepts of random
variables in Section 3.1. We will formally define the random variables and discuss their
relationship with the abstract probability space. Once this linkage is built, we can put
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the abstract probability space aside and focus on the random variables. In Section 3.2
we will define the probability mass function (PMF) of a random variable, which tells us
the probability of obtaining a state of the random variable. PMF is closely related to the
histogram of a dataset. We will explain the connection. In Section 3.3 we take a small detour
to consider the cumulative distribution functions (CDF). Then, we discuss the mean and
standard deviation in Section 3.4. Section 3.5 details a few commonly used random variables,
including Bernoulli, binomial, geometric, and Poisson variables.

3.1 Random Variables

3.1.1 A motivating example

Consider an experiment with 4 outcomes Ω = {♣,♢,♡,♠}. We want to construct the
probability space (Ω,F ,P). The sample space Ω is already defined. The event space F is the
set of all possible subsets in Ω, which, in our case, is a set of 24 subsets. For the probability
law P, let us assume that the probability of obtaining each outcome is

P[{♣}] = 1

6
, P[{♢}] = 2

6
, P[{♡}] = 2

6
, P[{♠}] = 1

6
.

Therefore, we have constructed a probability space (Ω,F ,P) where everything is perfectly
defined. So, in principle, they can live together happily forever.

A lazy data scientist comes, and there is a (small) problem. The data scientist does not
want to write the symbols ♣,♢,♡,♠. There is nothing wrong with his motivation because
all of us want efficiency. How can we help him? Well, the easiest solution is to encode each
symbol with a number, for example, ♣ ← 1, ♢ ← 2, ♡ ← 3, ♠ ← 4, where the arrow means
that we assign a number to the symbol. But we can express this more formally by defining
a function X : Ω→ R with

X(♣) = 1, X(♢) = 2, X(♡) = 3, X(♠) = 4.

There is nothing new here: we have merely converted the symbols to numbers, with the help
of a function X. However, with X defined, the probabilities can be written as

P[X = 1] =
1

6
, P[X = 2] =

2

6
, P[X = 3] =

2

6
, P[X = 4] =

1

6
.

This is much more convenient, and so the data scientist is happy.

3.1.2 Definition of a random variable

The story above is exactly the motivation for random variables. Let us define a random
variable formally.

Definition 3.1. A random variable X is a function X : Ω→ R that maps an outcome
ξ ∈ Ω to a number X(ξ) on the real line.
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This definition may be puzzling at first glance. Why should we overcomplicate things by
defining a function and calling it a variable?

If you recall the story above, we can map the notations of the story to the notations
of the definition as follows.

Symbol Meaning

Ω sample space = the set containing ♣,♢,♡,♠
ξ an element in the sample space, which is one of ♣,♢,♡,♠
X a function that maps ♣ to the number 1, ♢ to the number 2, etc

X(ξ) a number on the real line, e.g., X(♣) = 1

This explains our informal definition of random variables:

Key Concept 1: What are random variables?

Random variables are mappings from events to numbers.

The random variable X is a function. The input to the function is an outcome of the sample
space, whereas the output is a number on the real line. This type of function is somewhat
different from an ordinary function that often translates a number to another number.
Nevertheless, X is a function.

Figure 3.2: A random variable is a mapping from the outcomes in the sample space to numbers on the
real line. We can think of a random variable X as a translator that translates a statement to a number.

Why do we call this function X a variable? X is a variable because X has multiple
states. As we illustrate in Figure 3.2, the mapping X translates every outcome ξ to a
number. There are multiple numbers, which are the states of X. Each state has a certain
probability for X to land on. Because X is not deterministic, we call it a random variable.

Example 3.1. Suppose we flip a fair coin so that Ω = {head, tail}. We can define the
random variable X : Ω→ R as

X(head) = 1, and X(tail) = 0.
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Therefore, when we write P[X = 1] we actually mean P[{head}]. Is there any difference
between P[{Head}] and P[X = 1]? No, because they are describing two identical events.
Note that the assignment of the value is totally up to you. You can say “head” is equal
to the value 102. This is allowed and legitimate, but it isn’t very convenient.

Example 3.2. Flip a coin 2 times. The sample space Ω is

Ω = {(head,head), (head, tail), (tail,head), (tail, tail)}.

Suppose that X is a random variable that maps an outcome to a number representing
the sum of “head,” i.e.,

X(·) = number of heads.

Then, for the 4 ξ’s in the sample space there are only 3 distinct numbers. More precisely,
if we let ξ1 = (head,head), ξ2 = (head, tail), ξ3 = (tail,head), ξ4 = (tail, tail), then,
we have

X(ξ1) = 2, X(ξ2) = 1, X(ξ3) = 1, X(ξ4) = 0.

A pictorial illustration of this random variable is shown in Figure 3.3. This example
shows that the mapping defined by the random variable is not necessarily a one-to-one
mapping because multiple outcomes can be mapped to the same number.

Figure 3.3: A random variable that maps a pair of coins to a number, where the number represents the
number of heads.

3.1.3 Probability measure on random variables

By now, we hope that you understand Key Concept 1: A random variable is a mapping
from a statement to a number. However, we are now facing another difficulty. We knew
how to measure the size of an event using the probability law P because P(·) takes an event
E ∈ F and sends it to a number between [0, 1]. After the translation X, we cannot send the
output X(ξ) to P(·) because P(·) “eats” a set E ∈ F and not a number X(ξ) ∈ R. Therefore,
when we write P[X = 1], how do we measure the size of the event X = 1?
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This question appears difficult but is actually quite easy to answer. Since the prob-
ability law P(·) is always applied to an event, we need to define an event for the random
variable X. If we write the sets clearly, we note that “X = a” is equivalent to the set

E =

{
ξ ∈ Ω

∣∣∣∣X(ξ) = a

}
.

This is the set that contains all possible ξ’s such that X(ξ) = a. Therefore, when we say
“find the probability of X = a,” we are effectively asking the size of the set E = {ξ ∈
Ω |X(ξ) = a}.

How then do we measure the size of E? Since E is a subset in the sample space, E is
measurable by P. All we need to do is to determine what E is for a given a. This, in turn,
requires us to find the pre-image X−1(a), which is defined as

X−1(a)
def
=

{
ξ ∈ Ω

∣∣∣∣X(ξ) = a

}
.

Wait a minute, is this set just equal to E? Yes, the event E we are seeking is exactly the
pre-image X−1(a). As such, the probability measure of E is

P[X = a] = P[X−1(a)].

Figure 3.4 illustrates a situation where two outcomes ξ1 and ξ2 are mapped to the same
value a on the real line. The corresponding event is the set X−1(a) = {ξ1, ξ2}.

Figure 3.4: When computing the probability of P[{ξ ∈ Ω |X(ξ) = a}], we effectively take the inverse
mapping X−1(a) and compute the probability of the event P[{ξ ∈ X−1(a)}] = P[{ξ1, ξ2}].

Example 3.3. Suppose we throw a die. The sample space is

Ω = { , , , , , }.

There is a natural mapping X that maps X( ) = 1, X( ) = 2 and so on. Thus,
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P[X ≤ 3]
(a)
= P[X = 1] + P[X = 2] + P[X = 3]

(b)
= P[X−1(1)] + P[X−1(2)] + P[X−1(3)]
(c)
= P[{ }] + P[{ }] + P[{ }] = 3

6
.

In this derivation, step (a) is based on Axiom III, where the three events are disjoint.
Step (b) is the pre-image due to the random variable X. Step (c) is the list of ac-
tual events in the event space. Note that there is no hand-waving argument in this
derivation. Every step is justified by the concepts and theorems we have learned so
far.

Example 3.4. Throw a die twice. The sample space is then

Ω = {( , ), ( , ), . . . , ( , )}.

These elements can be translated to 36 outcomes:

ξ1 = ( , ), ξ2 = ( , ), . . . , ξ36 = ( , ).

Let
X = sum of two numbers.

Then, if we want to find the probability of getting X = 7, we can trace back and ask:
Among the 36 outcomes, which of those ξi’s will give us X(ξ) = 7? Or, what is the set
X−1(7)? To this end, we can write

P[X = 7] = P[{( , ), ( , ), ( , ), ( , ), ( , ), ( , )}]
= P[( , )] + P[( , )] + P[( , )]

+ P[( , )] + P[( , )] + P[( , )]

=
1

36
+

1

36
+

1

36
+

1

36
+

1

36
+

1

36
=

1

6
.

Again, in this example, you can see that all the steps are fully justified by the concepts
we have learned so far.

Closing remark. In practice, when the problem is clearly defined, we can skip the inverse
mapping X−1(a). However, this does not mean that the probability triplet (Ω,F ,P) is gone;
it is still present. The triplet is now just the background of the problem.

The set of all possible values returned by X is denoted as X(Ω). Since X is not
necessarily a bijection, the size of X(Ω) is not necessarily the same as the size of Ω. The
elements in X(Ω) are often denoted as a or x. We call a or x one of the states of X. Be
careful not to confuse x and X. The variable X is the random variable; it is a function.
The variable x is a state assigned by X. A random variable X has multiple states. When
we write P[X = x], we describe the probability of a random variable X taking a particular
state x. It is exactly the same as P[{ξ ∈ Ω |X(ξ) = x}].
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3.2 Probability Mass Function

Random variables are mappings that translate events to numbers. After the translation,
we have a set of numbers denoting the states of the random variables. Each state has a
different probability of occurring. The probabilities are summarized by a function known as
the probability mass function (PMF).

3.2.1 Definition of probability mass function

Definition 3.2. The probability mass function (PMF) of a random variable X is a
function which specifies the probability of obtaining a number X(ξ) = x. We denote a
PMF as

pX(x) = P[X = x]. (3.1)

The set of all possible states of X is denoted as X(Ω).

Do not get confused by the sample space Ω and the set of states X(Ω). The sample space Ω
contains all the possible outcomes of the experiments, whereas X(Ω) is the translation by
the mapping X. The event X = a is the set X−1(a) ⊆ Ω. Therefore, when we say P[X = x]
we really mean P[X−1(x)].

The probability mass function is a histogram summarizing the probability of each of
the states X takes. Since it is a histogram, a PMF can be easily drawn as a bar chart.

Example 3.5. Flip a coin twice. The sample space is Ω = {HH, HT, TH, TT}. We
can assign a random variable X = number of heads. Therefore,

X(“HH”) = 2, X(“TH”) = 1, X(“HT”) = 1, X(“TT”) = 0.

So the random variable X takes three states: 0, 1, 2. The PMF is therefore

pX(0) = P[X = 0] = P[{“TT”}] = 1

4
,

pX(1) = P[X = 1] = P[{“TH”, “HT”}] = 1

2
,

pX(2) = P[X = 2] = P[{“HH”}] = 1

4
.

3.2.2 PMF and probability measure

In Chapter 2, we learned that probability is a measure of the size of a set. We introduced a
weighting function that weights each of the elements in the set. The PMF is the weighing
function for discrete random variables. Two random variables are different when their PMFs
are different because they are constructing two different measures.
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To illustrate the idea, suppose there are two dice. They each have probability masses
as follows.

P[{ }] =
1

12
, P[{ }] =

2

12
, P[{ }] =

3

12
, P[{ }] =

4

12
, P[{ }] =

1

12
, P[{ }] =

1

12
,

P[{ }] =
2

12
, P[{ }] =

2

12
, P[{ }] =

2

12
, P[{ }] =

2

12
, P[{ }] =

2

12
, P[{ }] =

2

12
,

Let us define two random variables, X and Y , for the two dice. Then, the PMFs pX and pY
can be defined as

pX(1) =
1

12
, pX(2) =

2

12
, pX(3) =

3

12
, pX(4) =

4

12
, pX(5) =

1

12
, pX(6) =

1

12
,

pY (1) =
2

12
, pY (2) =

2

12
, pY (3) =

2

12
, pY (4) =

2

12
, pY (5) =

2

12
, pY (6) =

2

12
.

These two probability mass functions correspond to two different probability measures, let’s
say F and G. Define the event E = {between 2 and 3}. Then, F(E) and G(E) will lead to
two different results:

F(E) = P[2 ≤ X ≤ 3] = pX(2) + pX(3) =
1

12
+

2

12
=

3

12
,

G(E) = P[2 ≤ Y ≤ 3] = pY (2) + pY (3) =
2

12
+

2

12
=

4

12
.

Note that even though for some particular events two final results could be the same (e.g.,
2 ≤ X ≤ 4 and 2 ≤ Y ≤ 4), the underlying measures are completely different.

Figure 3.5 shows another example of two different measures F and G on the same
sample space Ω = {♣,♢,♡,♠}. Since the PMFs of the two measures are different, even
when given the same event E, the resulting probabilities will be different.

Figure 3.5: If we want to measure the size of a set E, using two different PMFs is equivalent to using
two different measures. Therefore, the probabilities will be different.

Does pX = pY imply X = Y ? If two random variables X and Y have the same PMF,
does it mean that the random variables are the same? The answer is no. Consider a random
variable with a symmetric PMF, e.g.,

pX(−1) = 1

4
, pX(0) =

1

2
, pX(1) =

1

4
. (3.2)

Suppose Y = −X. Then, pY (−1) = 1
4 , pY (0) =

1
2 , and pY (1) =

1
4 , which is the same as pX .

However, X and Y are two different random variables. If the sample space is {♣,♢,♡}, we
can define the mappings X(·) and Y (·) as

X(♣) = −1, X(♢) = 0, X(♡) = +1,

Y (♣) = +1, Y (♢) = 0, Y (♡) = −1.
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Therefore, when we say pX(−1) = 1
4 , the underlying event is♣. But when we say pY (−1) = 1

4 ,
the underlying event is ♡. The two random variables are different, although their PMFs have
exactly the same shape.

3.2.3 Normalization property

Here we must mention one important property of a probability mass function. This property
is known as the normalization property, which is a useful tool for a sanity check.

Theorem 3.1. A PMF should satisfy the condition that∑
x∈X(Ω)

pX(x) = 1. (3.3)

Proof. The proof follows directly from Axiom II, which states that P[Ω] = 1. Since x covers
all numerical values X can take, and since each x is distinct, by Axiom III we have∑

x∈X(Ω)

P[X = x] =
∑

x∈X(Ω)

P [{ξ ∈ Ω |X(ξ) = x}]

= P

⋃
ξ∈Ω

{ξ ∈ Ω |X(ξ) = x}

 = P[Ω] = 1.

□

Practice Exercise 3.1. Let pX(k) = c
(
1
2

)k
, where k = 1, 2, . . .. Find c.

Solution. Since
∑

k∈X(Ω) pX(k) = 1, we must have

∞∑
k=1

(
1

2

)k

= 1.

Evaluating the geometric series on the right-hand side, we can show that

∞∑
k=1

c

(
1

2

)k

=
c

2

∞∑
k=0

(
1

2

)k

=
c

2
· 1

1− 1
2

= c =⇒ c = 1.

Practice Exercise 3.2. Let pX(k) = c · sin
(
π
2 k
)
, where k = 1, 2, . . .. Find c.

Solution. The reader may might be tempted to sum pX(k) over all the possible k’s:

∞∑
k=1

sin
(π
2
k
)
= 1 + 0− 1 + 0 + · · · ?

= 0.
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However, a more careful inspection reveals that pX(k) is actually negative when k =
3, 7, 11, . . .. This cannot happen because a probability mass function must be non-
negative. Therefore, the problem is not defined, and so there is no solution.

0.0625

0.125

0.25

0.5

1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10

(a) (b)

Figure 3.6: (a) The PMF of pX(k) = c
(
1
2

)k
, for k = 1, 2, . . .. (b) The PMF of pX(k) = sin

(
π
2
k
)
,

where k = 1, 2, . . .. Note that this is not a valid PMF because probability cannot have negative values.

3.2.4 PMF versus histogram

PMFs are closely related to histograms. A histogram is a plot that shows the frequency of
a state. As we see in Figure 3.6, the x-axis is a collection of states, whereas the y-axis is
the frequency. So a PMF is indeed a histogram.

Viewing a PMF as a histogram can help us understand a random variable. For better
or worse, treating a random variable as a histogram could help you differentiate a random
variable from a variable. An ordinary variable only has one state, but a random variable
has multiple states. At any particular instance, we do not know which state will show up
before our observation. However, we do know the probability. For example, in the coin-flip
example, while we do not know whether we will get “HH,” we know that the chance of
getting “HH” is 1/4. Of course, having a probability of 1/4 does not mean that we will get
“HH” once every four trials. It only means that if we run an infinite number of experiments,
then 1/4 of the experiments will give us “HH.”

The linkage between PMF and histogram can be quite practical. For example, while
we do not know the true underlying distribution of the 26 letters of the English alphabet, we
can collect a large number of words and plot the histogram. The example below illustrates
how we can empirically define a random variable from the data.

Example. There are 26 English letters, but the frequencies of the letters in writing are
different. If we define a random variable X as a letter we randomly draw from an English
text, we can think ofX as an object with 26 different states. The mapping associated with the
random variable is straightforward: X(“a”) = 1, X(“b”) = 2, etc. The probability of landing
on a particular state approximately follows a histogram shown in Figure 3.7. The histogram
provides meaningful values of the probabilities, e.g., pX(1) = 0.0847, pX(2) = 0.0149, etc.
The true probability of the states may not be exactly these values. However, when we have
enough samples, we generally expect the histogram to approach the theoretical PMF. The
MATLAB and Python codes used to generate this histogram are shown below.

% MATLAB code to generate the histogram

load(‘ch3_data_English’);

bar(f/100,‘FaceColor’,[0.9,0.6,0.0]);
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Figure 3.7: The frequency of the 26 English letters. Data source: Wikipedia.

xticklabels({‘a’,‘b’,‘c’,‘d’,‘e’,‘f’,‘g’,‘h’,‘i’,‘j’,‘k’,‘l’,...

‘m’,‘n’,‘o’,‘p’,‘q’,‘r’,‘s’,‘t’,‘u’,‘v’,‘w’,‘x’,‘y’,‘z’});

xticks(1:26);

yticks(0:0.02:0.2);

axis([1 26 0 0.13]);

# Python code generate the histogram

import numpy as np

import matplotlib.pyplot as plt

f = np.loadtxt(‘./ch3_data_english.txt’)

n = np.arange(26)

plt.bar(n, f/100)

ntag = [‘a’,‘b’,‘c’,‘d’,‘e’,‘f’,‘g’,‘h’,‘i’,‘j’,‘k’,‘l’,‘m’,...

‘n’,‘o’,‘p’,‘q’,‘r’,‘s’,‘t’,‘u’,‘v’,‘w’,‘x’,‘y’,‘z’]

plt.xticks(n, ntag)

PMF = ideal histograms

If a random variable is more or less a histogram, why is the PMF such an important concept?
The answer to this question has two parts. The first part is that the histogram generated
from a dataset is always an empirical histogram, so-called because the dataset comes from
observation or experience rather than theory. Thus the histograms may vary slightly every
time we collect a dataset.

As we increase the number of data points in a dataset, the histogram will eventually
converge to an ideal histogram, or a distribution. For example, counting the number of
heads in 100 coin flips will fluctuate more in percentage terms than counting the heads in 10
million coin flips. The latter will almost certainly have a histogram that is closer to a 50–50
distribution. Therefore, the “histogram” generated by a random variable can be considered
the ultimate histogram or the limiting histogram of the experiment.

To help you visualize the difference between a PMF and a histogram, we show in
Figure 3.8 an experiment in which a die is thrown N times. Assuming that the die is fair,
the PMF is simply pX(k) = 1/6 for k = 1, . . . , 6, which is a uniform distribution across
the 6 states. Now, we can throw the die many times. As N increases, we observe that the
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Figure 3.8: Histogram and PMF, when throwing a fair die N times. As N increases, the histograms are
becoming more similar to the PMF.

histogram becomes more like the PMF. You can imagine that when N goes to infinity, the
histogram will eventually become the PMF. Therefore, when given a dataset, one way to
think of it is to treat the data as random realizations drawn from a certain PMF. The more
data points you have, the closer the histogram will become to the PMF.

The MATLAB and Python codes used to generate Figure 3.8 are shown below. The
two commands we use here are randi (in MATLAB), which generates random integer num-
bers, and hist, which computes the heights and bin centers of a histogram. In Python,
the corresponding commands are np.random.randint and plt.hist. Note that because of
the different indexing schemes in MATLAB and Python, we offset the maximum index in
np.random.randint to 7 instead of 6. Also, we shift the x-axes so that the bars are centered
at the integers.

% MATLAB code to generate the histogram

x = [1 2 3 4 5 6];

q = randi(6,100,1);

figure;

[num,val] = hist(q,x-0.5);

bar(num/100,‘FaceColor’,[0.8, 0.8,0.8]);

axis([0 7 0 0.24]);

# Python code generate the histogram

import numpy as np

import matplotlib.pyplot as plt

q = np.random.randint(7,size=100)
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plt.hist(q+0.5,bins=6)

This generative perspective is illustrated in Figure 3.9. We assume that the underlying
latent random variable has some PMF that can be described by a few parameters, e.g., the
mean and variance. Given the data points, if we can infer these parameters, we might retrieve
the entire PMF (up to the uncertainty level intrinsic to the dataset). We refer to this inverse
process as statistical inference.

Figure 3.9: When analyzing a dataset, one can treat the data points are samples drawn according to a
latent random variable with certain a PMF. The dataset we observe is often finite, and so the histogram
we obtain is empirical. A major task in data analysis is statistical inference, which tries to retrieve the
model information from the available measurements.

Returning to the question of why we need to understand the PMFs, the second part
of the answer is the difference between synthesis and analysis. In synthesis, we start with
a known random variable and generate samples according to the PMF underlying the ran-
dom variable. For example, on a computer, we often start with a Gaussian random variable
and generate random numbers according to the histogram specified by the Gaussian ran-
dom variable. Synthesis is useful because we can predict what will happen. We can, for
example, create millions of training samples to train a deep neural network. We can also
evaluate algorithms used to estimate statistical quantities such as mean, variance, moments,
etc., because the synthesis approach provides us with ground truth. In supervised learning
scenarios, synthesis is vital to ensuring sufficient training data.

The other direction of synthesis is analysis. The goal is to start with a dataset and
deduce the statistical properties of the dataset. For example, suppose we want to know
whether the underlying model is indeed a Gaussian model. If we know that it is a Gaussian
(or if we choose to use a Gaussian), we want to know the parameters that define this
Gaussian. The analysis direction addresses this model selection and parameter estimation
problem. Moving forward, once we know the model and the parameters, we can make a
prediction or do recovery, both of which are ubiquitous in machine learning.

We summarize our discussions below, which is Key Concept 2 of this chapter.

Key Concept 2: What are probability mass functions (PMFs)?

PMFs are the ideal histograms of random variables.
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3.2.5 Estimating histograms from real data

The following discussions about histogram estimation can be skipped if it is your first
time reading the book.

If you have a dataset, how would you plot the histogram? Certainly, if you have access
to MATLAB or Python, you can call standard functions such as hist (in MATLAB) or
np.histogram (in Python). However, when plotting a histogram, you need to specify the
number of bins (or equivalently the width of bins). If you use larger bins, then you will have
fewer bins with many elements in each bin. Conversely, if the bin width is too small, you
may not have enough samples to fill the histogram. Figure 3.10 illustrates two histograms
in which the bins are respectively too large and too small.
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Figure 3.10: The width of the histogram has substantial influence on the information that can be
extracted from the histogram.

The MATLAB and Python codes used to generate Figure 3.10 are shown below. Note
that here we are using an exponential random variable (to be discussed in Chapter 4). In
MATLAB, calling an exponential random variable is done using exprnd, whereas in Python
the command is np.random.exponential. For this experiment, we can specify the number
of bins k, which can be set to k = 200 or k = 5. To suppress the Python output of the array,
we can add a semicolon ;. A final note is that lambda is a reserved variable in Python. Use
something else.

% MATLAB code used to generate the plots

lambda = 1;

k = 1000;

X = exprnd(1/lambda,[k,1]);

[num,val] = hist(X,200);

bar(val,num,‘FaceColor’,[1, 0.5,0.5]);

# Python code used to generate the plots

import numpy as np

import matplotlib.pyplot as plt

lambd = 1
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k = 1000

X = np.random.exponential(1/lambd, size=k)

plt.hist(X,bins=200);

In statistics, there are various rules to determine the bin width of a histogram. We
mention a few of them here. Let K be the number of bins and N the number of samples.

� Square-root: K =
√
N

� Sturges’ formula: K = log2 N + 1.

� Rice Rule: K = 2 3
√
N

� Scott’s normal reference rule: K = maxX−minX
h , where h =

3.5
√

Var[X]
3√
N

is the bin

width.

For the example data shown in Figure 3.10, the histograms obtained using the above rules
are given in Figure 3.11. As you can see, different rules have different suggested bin widths.
Some are more conservative, e.g., using fewer bins, whereas some are less conservative. In
any case, the suggested bin widths do seem to provide better histograms than the original
ones in Figure 3.10. However, no bin width is the best for all purposes.
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Figure 3.11: Histograms of a dataset using different bin width rules.

Beyond these predefined rules, there are also algorithmic tools to determine the bin
width. One such tool is known as cross-validation. Cross-validation means defining some
kind of cross-validation score that measures the statistical risk associated with the his-
togram. A histogram having a lower score has a lower risk, and thus it is a better histogram.
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Note that the word “better” is relative to the optimality criteria associated with the cross-
validation score. If you do not agree with our cross-validation score, our optimal bin width is
not necessarily the one you want. In this case, you need to specify your optimality criteria.

Theoretically, deriving a meaningful cross-validation score is beyond the scope of this
book. However, it is still possible to understand the principle. Let h be the bin width of the
histogram, K the number of bins, and N the number of samples. Given a dataset, we follow
this procedure:

� Step 1: Choose a bin width h.

� Step 2: Construct a histogram from the data, using the bin width h. The histogram will
have the empirical PMF values p̂1, p̂2, . . . , p̂K , which are the heights of the histograms
normalized so that the sum is 1.

� Step 3: Compute the cross-validation score (see Wasserman, All of Statistics, Section
20.2):

J(h) =
2

(N − 1)h
− N + 1

(N − 1)h

(
p̂21 + p̂22 + · · ·+ p̂2K

)
(3.4)

� Repeat Steps 1, 2, 3, until we find an h that minimizes J(h).

Note that when we use a different h, the PMF values p̂1, p̂2, . . . , p̂K will change, and the
number of bins K will also change. Therefore, when changing h, we are changing not only
the terms in J(h) that explicitly contain h but also terms that are implicitly influenced.
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Figure 3.12: Cross-validation score for the histogram. (a) The score of one particular dataset. (b) The
scores for many different datasets generated by the same model.

For the dataset we showed in Figure 3.10, the cross-validation score J(h) is shown in
Figure 3.12. We can see that although the curve is noisy, there is indeed a reasonably clear
minimum happening around 20 ≤ K ≤ 30, which is consistent with some of the rules.

The MATLAB and Python codes we used to generate Figure 3.12 are shown below.
The key step is to implement Equation (3.4) inside a for-loop, where the loop goes through
the range of bins we are interested in. To obtain the PMF values p̂1, . . . , p̂K , we call hist
in MATLAB and np.histogram in Python. The bin width h is the number of samples n

divided by the number of bins m.
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% MATLAB code to perform the cross validation

lambda = 1;

n = 1000;

X = exprnd(1/lambda,[n,1]);

m = 6:200;

J = zeros(1,195);

for i=1:195

[num,binc] = hist(X,m(i));

h = n/m(i);

J(i) = 2/((n-1)*h)-((n+1)/((n-1)*h))*sum( (num/n).^2 );

end

plot(m,J,‘LineWidth’,4,‘Color’,[0.9,0.2,0.0]);

# Python code to perform the cross validation

import numpy as np

import matplotlib.pyplot as plt

lambd = 1

n = 1000

X = np.random.exponential(1/lambd, size=n)

m = np.arange(5,200)

J = np.zeros((195))

for i in range(0,195):

hist,bins = np.histogram(X,bins=m[i])

h = n/m[i]

J[i] = 2/((n-1)*h)-((n+1)/((n-1)*h))*np.sum((hist/n)**2)

plt.plot(m,J);

In Figure 3.12(b), we show another set of curves from the same experiment. The
difference here is that we assume access to the true generative model so that we can generate
the many datasets of the same distribution. In this experiment we generated T = 1000
datasets. We compute the cross-validation score J(h) for each of the datasets, yielding T
score functions J (1)(h), . . . , J (T )(h). We subtract the minimum because different realizations
have different offsets. Then we compute the average:

J(h) =
1

T

T∑
t=1

{
J (t)(h)−min

h

{
J (t)(h)

}}
. (3.5)

This gives us a smooth red curve as shown in Figure 3.12(b). The minimum appears to be
at N = 25. This is the optimal N , concerning the cross-validation score, on the average of
all datasets.

All rules, including cross-validation, are based on optimizing for a certain objective.
Your objective could be different from our objective, and so our optimum is not necessarily
your optimum. Therefore, cross-validation may not be the best. It depends on your problem.

End of the discussion.

120



3.3. CUMULATIVE DISTRIBUTION FUNCTIONS (DISCRETE)

3.3 Cumulative Distribution Functions (Discrete)

While the probability mass function (PMF) provides a complete characterization of a dis-
crete random variable, the PMFs themselves are technically not “functions” because the
impulses in the histogram are essentially delta functions. More formally, a PMF pX(k)
should actually be written as

pX(x) =
∑

k∈X(Ω)

pX(k)︸ ︷︷ ︸
PMF values

· δ(x− k)︸ ︷︷ ︸
delta function

.

This is a train of delta functions, where the height is specified by the probability mass pX(k).
For example, a random variable with PMF values

pX(0) =
1

4
, pX(1) =

1

2
, pX(2) =

1

4

will be expressed as

pX(x) =
1

4
δ(x) +

1

2
δ(x− 1) +

1

4
δ(x− 2).

Since delta functions need to be integrated to generate values, the typical things we want to
do, e.g., integration and differentiation, are not as straightforward in the sense of Riemann-
Stieltjes.

The way to handle the unfriendliness of the delta functions is to consider mild modi-
fications of the PMF. This notation of “cumulative” distribution functions will allow us to
resolve the delta function problems. We will defer the technical details to the next chap-
ter. For the time being, we will briefly introduce the idea to prepare you for the technical
discussion later.

3.3.1 Definition of the cumulative distribution function

Definition 3.3. Let X be a discrete random variable with Ω = {x1, x2, . . .}. The
cumulative distribution function (CDF) of X is

FX(xk)
def
= P[X ≤ xk] =

k∑
ℓ=1

pX(xℓ). (3.6)

If Ω = {. . . ,−1, 0, 1, 2, . . .}, then the CDF of X is

FX(k)
def
= P[X ≤ k] =

k∑
ℓ=−∞

pX(ℓ). (3.7)

A CDF is essentially the cumulative sum of a PMF from −∞ to x, where the variable x′ in
the sum is a dummy variable.
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Example 3.6. Consider a random variable X with PMF pX(0) = 1
4 , pX(1) = 1

2 and
pX(4) = 1

4 . The CDF of X can be computed as

FX(0) = P[X ≤ 0] = pX(0) =
1

4
,

FX(1) = P[X ≤ 1] = pX(0) + pX(1) =
3

4
,

FX(4) = P[X ≤ 4] = pX(0) + pX(1) + pX(4) = 1.

As shown in Figure 3.13, the CDF of a discrete random variable is a staircase function.
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Figure 3.13: Illustration of a PMF and a CDF.

The MATLAB code and the Python code used to generate Figure 3.13 are shown
below. The CDF is computed using the command cumsum in MATLAB and np.cumsum in
Python.

% MATLAB code to generate a PMF and a CDF

p = [0.25 0.5 0.25];

x = [0 1 4];

F = cumsum(p);

figure(1);

stem(x,p,‘.’,‘LineWidth’,4,‘MarkerSize’,50);

figure(2);

stairs([-4 x 10],[0 F 1],‘.-’,‘LineWidth’,4,‘MarkerSize’,50);

% Python code to generate a PMF and a CDF

import numpy as np

import matplotlib.pyplot as plt

p = np.array([0.25, 0.5, 0.25])

x = np.array([0, 1, 4])

F = np.cumsum(p)

plt.stem(x,p,use_line_collection=True); plt.show()

plt.step(x,F); plt.show()
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Why is CDF a better-defined function than PMF? There are technical reasons associ-
ated with whether a function is integrable. Without going into the details of these discus-
sions, a short answer is that delta functions are defined through integrations; they are not
functions. A delta function is defined as a function such that δ(x) = 0 everywhere except at
x = 0, and

∫
Ω
δ(x) dx = 1. On the other hand, a staircase function is always well-defined.

The discontinuous points of a staircase can be well defined if we specify the gap between
two consecutive steps. For example, in Figure 3.13, as soon as we specify the gap 1/4, 1/2,
and 1/4, the staircase function is completely defined.

Example. Figure 3.14 shows the empirical histogram of the English letters and the corre-
sponding empirical CDF. We want to differentiate PMF versus histogram and CDF versus
empirical CDF. The empirical CDF is the CDF computed from a finite dataset.
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Figure 3.14: PMF and a CDF of the frequency of English letters.

3.3.2 Properties of the CDF

We observe from the example in Figure 3.13 that a CDF has several properties. First, being
a staircase function, the CDF is non-decreasing. It can stay constant for a while, but it never
drops. Second, the minimum value of a CDF is 0, whereas the maximum value is 1. It is 0
for any value that is smaller than the first state; it is 1 for any value that is larger than the
last state. Third, the gap at each jump is exactly the probability mass at that state. Let us
summarize these observations in the following theorem.

Theorem 3.2. If X is a discrete random variable, then the CDF of X has the following
properties:

(i) The CDF is a sequence of increasing unit steps.

(ii) The maximum of the CDF is when x =∞: FX(+∞) = 1.

(iii) The minimum of the CDF is when x = −∞: FX(−∞) = 0.

(iv) The unit steps have jumps at positions where pX(x) > 0.

Proof. Statement (i) can be seen from the summation

FX(x) =
∑
x′≤x

pX(x′).
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Since the probability mass function is non-negative, the value of FX is larger when the value
of the argument is larger. That is, x ≤ y implies FX(x) ≤ FX(y). The second statement (ii)
is true because the summation includes all possible states. So we have

FX(+∞) =

∞∑
x′=−∞

pX(x′) = 1.

Similarly, for the third statement (iii),

FX(−∞) =
∑

x′≤−∞

pX(x′).

The summation is taken over an empty set, and so FX(−∞) = 0. Statement (iv) is true
because the cumulative sum changes only when there is a non-zero mass in the PMF. □

As we can see in the proof, the basic argument of the CDF is the cumulative sum of
the PMF. By definition, a cumulative sum always adds mass. This is why the CDF is always
increasing, has 0 at −∞, and has 1 at +∞. This last statement deserves more attention. It
implies that the unit step always has a solid dot on the left-hand side and an empty dot
on the right-hand side, because when the CDF jumps, the final value is specified by the
“≤” sign in Equation (3.6). The technical term for this property is right continuous.

3.3.3 Converting between PMF and CDF

Theorem 3.3. If X is a discrete random variable, then the PMF of X can be obtained
from the CDF by

pX(xk) = FX(xk)− FX(xk−1), (3.8)

where we assumed that X has a countable set of states {x1, x2, . . .}. If the sample space
of the random variable X contains integers from −∞ to +∞, then the PMF can be
defined as

pX(k) = FX(k)− FX(k − 1). (3.9)

Example 3.7. Continuing with the example in Figure 3.13, if we are given the CDF

FX(0) =
1

4
, FX(1) =

3

4
, FX(4) = 1,

how do we find the PMF? We know that the PMF will have non-negative values only
at x = 0, 1, 4. For each of these x, we can show that

pX(0) = FX(0)− FX(−∞) =
1

4
− 0 =

1

4
,

pX(1) = FX(1)− FX(0) =
3

4
− 1

4
=

1

2
,

pX(4) = FX(4)− FX(1) = 1− 3

4
=

1

4
.
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3.4 Expectation

When analyzing data, it is often useful to extract certain key parameters such as the mean
and the standard deviation. The mean and the standard deviation can be seen from the lens
of random variables. In this section, we will formalize the idea using expectation.

3.4.1 Definition of expectation

Definition 3.4. The expectation of a random variable X is

E[X] =
∑

x∈X(Ω)

x pX(x). (3.10)

Expectation is the mean of the random variable X. Intuitively, we can think of pX(x) as the
percentage of times that the random variable X attains the value x. When this percentage
is multiplied by x, we obtain the contribution of each x. Summing over all possible values
of x then yields the mean. To see this more clearly, we can write the definition as

E[X] =
∑

x∈X(Ω)︸ ︷︷ ︸
sum over all states

x︸ ︷︷ ︸
a state X takes

pX(x)︸ ︷︷ ︸
the percentage

.

Figure 3.15 illustrates a PMF that contains five states x1, . . . , x5. Corresponding to each
state are pX(x1), . . . , pX(x5). For this PMF to make sense, we must assume that pX(x1) +

· · · + pX(x5) = 1. To simplify notation, let us define pi
def
= pX(xi). Then the expectation

of X is just the sum of the products: value (xi) times height (pi). This gives E[X] =∑5
i=1 xipX(xi).

Figure 3.15: The expectation of a random variable is the sum of xipi.

We emphasize that the definition of the expectation is exactly the same as the usual
way we calculate the average of a dataset. When we calculate the average of a dataset
D = {x(1), x(2), . . . , x(N)}, we sum up these N samples and divide by the number of samples.
This is what we called the empirical average or the sample average:

average =
1

N

N∑
n=1

x(n). (3.11)
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Of course, in a typical dataset, these N samples often take distinct values. But suppose
that among these N samples there are only K different values. For example, if we throw a
die a million times, every sample we record will be one of the six numbers. This situation
is illustrated in Figure 3.16, where we put the samples into the correct bin storing these
values. In this case, to calculate the average we are effectively doing a binning:

average =
1

N

K∑
k=1

value xk × number of samples with value xk. (3.12)

Equation (3.12) is exactly the same as Equation (3.11), as long as the samples can be grouped
into K different values. With a little calculation, we can rewrite Equation (3.12) as

average =

K∑
k=1︸︷︷︸

sum of all states

value xk︸ ︷︷ ︸
a state X takes

× number of samples with value xk

N︸ ︷︷ ︸
the percentage

,

which is the same as the definition of expectation.

Figure 3.16: If we have a dataset D containing N samples, and if there are only K distinct values, we
can effectively put these N samples into K bins. Thus, the “average” (which is the sum divided by the
number N) is exactly the same as our definition of expectation.

The difference between E[X] and the average is that E[X] is computed from the ideal
histogram, whereas average is computed from the empirical histogram. When the number of
samples N approaches infinity, we expect the average to approximate E[X]. However, when
N is small, the empirical average will have random fluctuations around E[X]. Every time
we experiment, the empirical average may be slightly different. Therefore, we can regard
E[X] as the true average of a certain random variable, and the empirical average as a finite-
sample average based on the particular experiment we are working with. This summarizes
Key Concept 3 of this chapter.

Key Concept 3: What is expectation?

Expectation = Mean = Average computed from a PMF.

If we are given a dataset on a computer, computing the mean can be done by calling
the command mean in MATLAB and np.mean in Python. The example below shows the
case of finding the mean of 10000 uniformly distributed random numbers.
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% MATLAB code to compute the mean of a dataset

X = rand(10000,1);

mX = mean(X);

# Python code to compute the mean of a dataset

import numpy as np

X = np.random.rand(10000)

mX = np.mean(X)

Example 3.8. Let X be a random variable with PMF pX(0) = 1/4, pX(1) = 1/2 and
pX(2) = 1/4. We can show that the expectation is

E[X] = (0)

(
1

4

)
︸ ︷︷ ︸
pX(0)

+ (1)

(
1

2

)
︸ ︷︷ ︸
pX(1)

+ (2)

(
1

4

)
︸ ︷︷ ︸
pX(2)

= 1.

On MATLAB and Python, if we know the PMF then computing the expectation is
straight-forward. Here is the code to compute the above example.

% MATLAB code to compute the expectation

p = [0.25 0.5 0.25];

x = [0 1 2];

EX = sum(p.*x);

# Python code to compute the expectation

import numpy as np

p = np.array([0.25, 0.5, 0.25])

x = np.array([0, 1, 2])

EX = np.sum(p*x)

Example 3.9. Flip an unfair coin, where the probability of getting a head is 3
4 . Let

X be a random variable such that X = 1 means getting a head. Then we can show
that pX(1) = 3

4 and pX(0) = 1
4 . The expectation of X is therefore

E[X] = (1)pX(1) + (0)pX(0) = (1)

(
3

4

)
+ (0)

(
1

4

)
=

3

4
.

Center of mass. How would you interpret the result of this example? Does it mean
that, on average, we will get 3/4 heads (but there is not anything called 3/4 heads!). Recall
the definition of a random variable: it is a translator that translates a descriptive state
to a number on the real line. Thus the expectation, which is an operation defined on the
real line, can only tell us what is happening on the real line, not in the original sample
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Figure 3.17: Center of mass. If a state x2 is more influential than another state x1, the center of mass
E[X] will lean towards x2.

space. On the real line, the expectation can be regarded as the center of mass, which is the
point where the “forces” between the two states are “balanced”. In Figure 3.17 we depict a
random variable with two states x1 and x2. The state x1 has less influence (because pX(x1)
is smaller) than x2. Therefore the center of mass is shifted towards x2. This result shows us
that the value E[X] is not necessarily in the sample space. E[X] is a deterministic number
with nothing to do with the sample space.

Example 3.10. Let X be a random variable with PMF pX(k) = 1
2k
, for k = 1, 2, 3, . . ..

The expectation is

E[X] =

∞∑
k=1

kpX(k) =

∞∑
k=1

k · 1
2k

=
1

2

∞∑
k=1

k · 1

2k−1
=

1

2
· 1

(1− 1
2 )

2
= 2.

On MATLAB and Python, if you want to verify this answer you can use the following
code. Here, we approximate the infinite sum by a finite sum of k = 1, . . . , 100.

% MATLAB code to compute the expectation

k = 1:100;

p = 0.5.^k;

EX = sum(p.*k);

# Python code to compute the expectation

import numpy as np

k = np.arange(100)

p = np.power(0.5,k)

EX = np.sum(p*k)

Example 3.11. Roll a die twice. Let X be the first roll and Y be the second roll.
Let Z = max(X,Y ). To compute the expectation E[Z], we first construct the sample
space. Since there are two rolls, we can construct a table listing all possible pairs of
outcomes. This will give us {(1, 1), (1, 2), . . . , (6, 6)}. Now, we calculate Z, which is the
max of the two rolls. So if we have (1, 3), then the max will be 3, whereas if we have
(5, 2), then the max will be 5. We can complete a table as shown below.
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1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 2 3 4 5 6
3 3 3 3 4 5 6
4 4 4 4 4 5 6
5 5 5 5 5 5 6
6 6 6 6 6 6 6

This table tell us that Z has 6 states. The PMF of Z can be determined by
counting the number of times a state shows up in the table. Thus, we can show that

pZ(1) =
1

36
, pZ(2) =

3

36
, pZ(3) =

5

36
,

pZ(4) =
7

36
, pZ(5) =

9

36
, pZ(6) =

11

36
.

The expectation of Z is therefore

E[Z] = (1)

(
1

36

)
+ (2)

(
3

36

)
+ (3)

(
5

36

)
+ (4)

(
7

36

)
+ (5)

(
9

36

)
+ (6)

(
11

36

)
=

161

36
.

Example 3.12. Consider a game in which we flip a coin 3 times. The reward of the
game is

• $1 if there are 2 heads

• $8 if there are 3 heads

• $0 if there are 0 or 1 head

There is a cost associated with the game. To enter the game, the player has to pay
$1.50. We want to compute the net gain, on average.

To answer this question, we first note that the sample space contains 8 elements:
HHH, HHT, HTH, THH, THT, TTH, HTT, TTT. Let X be the number of heads.
Then the PMF of X is

pX(0) =
1

8
, pX(1) =

3

8
, pX(2) =

3

8
, pX(3) =

1

8
.

We then let Y be the reward. The PMF of Y can be found by “adding” the probabilities
of X. This yields

pY (0) = pX(0) + pX(1) =
4

8
, pY (1) = pX(2) =

3

8
, pY (8) = pX(3) =

1

8
.
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The expectation of Y is

E[X] = (0)

(
4

8

)
+ (1)

(
3

8

)
+ (8)

(
1

8

)
=

11

8
.

Since the cost of the game is 12
8 , the net gain (on average) is − 1

8 .

3.4.2 Existence of expectation

Does every PMF have an expectation? No, because we can construct a PMF such that the
expectation is undefined.

Example 3.13. Consider a random variable X with the following PMF:

pX(k) =
6

π2k2
, k = 1, 2, . . . .

Using a result from algebra, one can show that
∑∞

k=1
1
k2 = π2

6 . Therefore, pX(k) is a
legitimate PMF because

∑∞
k=1 pX(k) = 1. However, the expectation diverges, because

E[X] =

∞∑
k=1

kpX(k)

=
6

π2

∞∑
k=1

1

k
→∞,

where the limit is due to the harmonic seriesa: 1 + 1
2 + 1

3 + · · · =∞.

ahttps://en.wikipedia.org/wiki/Harmonic_series_(mathematics)

A PMF has an expectation when it is absolutely summable.

Definition 3.5. A discrete random variable X is absolutely summable if

E[|X|] def=
∑

x∈X(Ω)

|x| pX(x) <∞. (3.13)

This definition tells us that not all random variables have a finite expectation. This
is a very important mathematical result, but its practical implication is arguably limited.
Most of the random variables we use in practice are absolutely summable. Also, note that
the property of absolute summability applies to discrete random variables. For continuous
random variables, we have a parallel concept called absolute integrability, which will be
discussed in the next chapter.

3.4.3 Properties of expectation

The expectation of a random variable has several useful properties. We list them below.
Note that these properties apply to both discrete and continuous random variables.
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Theorem 3.4. The expectation of a random variable X has the following properties:

(i) Function. For any function g,

E[g(X)] =
∑

x∈X(Ω)

g(x) pX(x).

(ii) Linearity. For any function g and h,

E[g(X) + h(X)] = E[g(X)] + E[h(X)].

(iii) Scale. For any constant c,
E[cX] = cE[X].

(iv) DC Shift. For any constant c,

E[X + c] = E[X] + c.

Proof of (i): A pictorial proof of (i) is shown in Figure 3.18. The key idea is a change of
variable.

Figure 3.18: By letting g(X) = Y , the PMFs are not changed. What changes are the states.

When we have a function Y = g(X), the PMF of Y will have impulses moved from x
(the horizontal axis) to g(x) (the vertical axis). The PMF values (i.e., the probabilities or
the height of the stems), however, are not changed. If the mapping g(X) is many-to-one,
multiple PMF values will add to the same position. Therefore, when we compute E[g(X)],
we compute the expectation along the vertical axis.

Practice Exercise 3.3. Prove statement (iii): For any constant c, E[cX] = cE[X].

Solution. Recall the definition of expectation:

E[cX] =
∑

x∈X(Ω)

(cx)pX(x) = c
∑

x∈X(Ω)

xpX(x)

︸ ︷︷ ︸
=E[X]

= cE[X].

Statement (iii) is illustrated in Figure 3.19. Here, we assume that the original PMF has 3
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states X = 0, 1, 2. We multiply X by a constant c = 3. This changes X to cX = 0, 3, 6.
However, since the probabilities are not changed, the height of the PMF values remains.
Therefore, when computing the expectation, we just multiply E[X] by c to get cE[X].

Figure 3.19: Pictorial representation of E[cX] = cE[X]. When we multiply X by c, we fix the probabil-
ities but make the spacing between states wider/narrower.

Practice Exercise 3.4. Prove statement (ii): For any function g and h, E[g(X) +
h(X)] = E[g(X)] + E[h(X)].

Solution. Recall the definition of expectation:

E[g(X) + h(X)] =
∑

x∈X(Ω)

[g(x) + h(x)]pX(x)

=
∑

x∈X(Ω)

g(x)pX(x)

︸ ︷︷ ︸
=E[g(X)]

+
∑

x∈X(Ω)

h(x)pX(x)

︸ ︷︷ ︸
=E[h(X)]

= E[g(X)] + E[h(X)].

Practice Exercise 3.5. Prove statement (iv): For any constant c, E[X+c] = E[X]+c.

Solution. Recall the definition of expectation:

E[X + c] =
∑

x∈X(Ω)

(x+ c)pX(x)

=
∑

x∈X(Ω)

xpX(x)

︸ ︷︷ ︸
=E[X]

+ c ·
∑

x∈X(Ω)

pX(x)

︸ ︷︷ ︸
=1

= E[X] + c.

This result is illustrated in Figure 3.20. As we add a constant to the random variable,
its PMF values remain the same but their positions are shifted. Therefore, when computing
the mean, the mean will be shifted accordingly.
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Figure 3.20: Pictorial representation of E[X+c] = E[X]+c. When we add c toX, we fix the probabilities
and shift the entire PMF to the left or to the right.

Example 3.14. Let X be a random variable with four equally probable states 0, 1, 2, 3.
We want to compute the expectation E[cos(πX/2)]. To do so, we note that

E[cos(πX/2)] =
∑

x∈X(Ω)

cos

(
πX

2

)
pX(x)

= (cos 0)

(
1

4

)
+ (cos

π

2
)

(
1

4

)
+ (cos

2π

2
)

(
1

4

)
+ (cos

3π

2
)

(
1

4

)
=

1 + 0 + (−1) + 0

4
= 0.

Example 3.15. Let X be a random variable with E[X] = 1 and E[X2] = 3. We want
to find the expectation E[(aX + b)2]. To do so, we realize that

E[(aX + b)2]
(a)
= E[a2X2 + 2abX + b2]

(b)
= a2E[X2] + 2abE[X] + b2 = 3a2 + 2ab+ b2,

where (a) is due to expansion of the square, and (b) holds in two steps. The first step
is to apply statement (ii) for individual functions of expectations, and the second step
is to apply statement (iii) for scalar multiple of the expectations.

3.4.4 Moments and variance

Based on the concept of expectation, we can define a moment:

Definition 3.6. The kth moment of a random variable X is

E[Xk] =
∑
x

xk pX(x). (3.14)

Essentially, the kth moment is the expectation applied to Xk. The definition follows from
statement (i) of the expectation’s properties. Using this definition, we note that E[X] is the
first moment and E[X2] is the second moment. Higher-order moments can be defined, but
in practice they are less commonly used.
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Example 3.16. Flip a coin 3 times. Let X be the number of heads. Then

pX(0) =
1

8
, pX(1) =

3

8
, pX(2) =

3

8
, pX(3) =

1

8
.

The second moment E[X2] is

E[X2] = (0)2
(
1

8

)
+ (1)2

(
3

8

)
+ (2)2

(
3

8

)
+ (4)2

(
1

8

)
= 3.

Example 3.17. Consider a random variable X with PMF

pX(k) =
1

2k
, k = 1, 2, . . . .

The second moment E[X2] is

E[X2] =

∞∑
k=1

k2
(
1

2

)k

=
1

22

∞∑
k=1

k(k−1 + 1)

(
1

2

)k−2

=
1

22

∞∑
k=1

k(k−1)
(
1

2

)k−2

+
1

22

∞∑
k=1

k

(
1

2

)k−2

=
1

22

(
2

(1− 1
2 )

3

)
+

1

2

(
1

(1− 1
2 )

2

)
= 6.

Using the second moment, we can define the variance of a random variable.

Definition 3.7. The variance of a random variable X is

Var[X] = E[(X − µ)2], (3.15)

where µ = E[X] is the expectation of X.

We denote σ2 by Var[X]. The square root of the variance, σ, is called the standard deviation
of X. Like the expectation E[X], the variance Var[X] is computed using the ideal histogram
PMF. It is the limiting object of the usual standard deviation we calculate from a dataset.

On a computer, computing the variance of a dataset is done by calling built-in com-
mands such as var in MATLAB and np.var in Python. The standard deviation is computed
using std and np.std, respectively.

% MATLAB code to compute the variance

X = rand(10000,1);

vX = var(X);

sX = std(X);

% Python code to compute the variance

import numpy as np
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X = np.random.rand(10000)

vX = np.var(X)

sX = np.std(X)

What does the variance mean? It is a measure of the deviation of the random variable
X relative to its mean. This deviation is quantified by the squared difference (X −µ)2. The
expectation operator takes the average of the deviation, giving us a deterministic number
E[(X − µ)2].

Theorem 3.5. The variance of a random variable X has the following properties:

(i) Moment.
Var[X] = E[X2]− E[X]2.

(ii) Scale. For any constant c,

Var[cX] = c2Var[X].

(iii) DC Shift. For any constant c,

Var[X + c] = Var[X].

Figure 3.21: Pictorial representations of Var[cX] = c2Var[X] and Var[X + c] = Var[X].

Practice Exercise 3.6. Prove Theorem 3.5 above.

Solution. For statement (i), we show that

Var[X] = E[(X − µ)2] = E[X2 − 2Xµ+ µ2] = E[X2]− µ2.
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Statement (ii) holds because E[cX] = cµ and

Var[cX] = E[(cX − E[cX])2]

= E[(cX − cµ)2] = c2E[(X − µ)2] = c2Var[X].

Statement (iii) holds because

Var[X + c] = E[((X + c)− E[X + c])2] = E[(X − E[X])2] = Var[X].

The properties above are useful in various ways. The first statement provides a link connect-
ing variance and the second moment. Statement (ii) implies that when X is scaled by c, the
variance should be scaled by c2 because of the square in the second moment. Statement (iii)
says that when X is shifted by a scalar c, the variance is unchanged. This is true because
no matter how we shift the mean, the fluctuation of the random variable remains the same.

Practice Exercise 3.7. Flip a coin with probability p to get a head. Let X be a
random variable denoting the outcome. The PMF of X is

pX(0) = 1− p, pX(1) = p.

Find E[X], E[X2] and Var[X].

Solution. The expectation of X is

E[X] = (0)pX(0) + (1)pX(1) = (0)(1− p) + (1)(p) = p.

The second moment is

E[X2] = (0)2pX(0) + (1)2pX(1) = p.

The variance is

Var[X] = E[X2]− E[X]2 = p− p2 = p(1− p).

3.5 Common Discrete Random Variables

In the previous sections, we have conveyed three key concepts: one about the random vari-
able, one about the PMF, and one about the mean. The next step is to introduce a few
commonly used discrete random variables so that you have something concrete in your “tool-
box.” As we have mentioned before, these predefined random variables should be studied
from a synthesis perspective (sometimes called generative). The plan for this section is to
introduce several models, derive their theoretical properties, and discuss examples.

Note that some extra effort will be required to understand the origins of the random
variables. The origins of random variables are usually overlooked, but they are more impor-
tant than the equations. For example, we will shortly discuss the Poisson random variable
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Figure 3.22: A Bernoulli random variable has two states with probability p and 1− p.

and its PMF pX(k) = λke−λ

k! . Why is the Poisson random variable defined in this way? If
you know how the Poisson PMF was originally derived, you will understand the assumptions
made during the derivation. Consequently, you will know why Poisson is a good model for
internet traffic, recommendation scores, and image sensors for computer vision applications.
You will also know under what situation the Poisson model will fail. Understanding the
physics behind the probability models is the focus of this section.

3.5.1 Bernoulli random variable

We start discussing the simplest random variable, namely the Bernoulli random variable.
A Bernoulli random variable is a coin-flip random variable. The random variable has two
states: either 1 or 0. The probability of getting 1 is p, and the probability of getting 0 is
1− p. See Figure 3.22 for an illustration. Bernoulli random variables are useful for all kinds
of binary state events: coin flip (H or T), binary bit (1 or 0), true or false, yes or no, present
or absent, Democrat or Republican, etc.

To make these notions more precise, we define a Bernoulli random variable as follows.

Definition 3.8. Let X be a Bernoulli random variable. Then, the PMF of X is

pX(0) = 1− p, pX(1) = p,

where 0 < p < 1 is called the Bernoulli parameter. We write

X ∼ Bernoulli(p)

to say that X is drawn from a Bernoulli distribution with a parameter p.

In this definition, the parameter p controls the probability of obtaining 1. In a coin-flip event,
p is usually 1

2 , meaning that the coin is fair. However, for biased coins p is not necessarily 1
2 .

For other situations such as binary bits (0 or 1), the probability of obtaining 1 could be very
different from the probability of obtaining 0.

In MATLAB and Python, generating Bernoulli random variables can be done by call-
ing the binomial random number generator np.random.binomial (Python) and binornd

(MATLAB). When the parameter n is equal to 1, the binomial random variable is equiv-
alent to a Bernoulli random variable. The MATLAB and Python codes to synthesize a
Bernoulli random variable are shown below.
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% MATLAB code to generate 1000 Bernoulli random variables

p = 0.5;

n = 1;

X = binornd(n,p,[1000,1]);

[num, ~] = hist(X, 10);

bar(linspace(0,1,10), num,‘FaceColor’,[0.4, 0.4, 0.8]);

# Python code to generate 1000 Bernoulli random variables

import numpy as np

import matplotlib.pyplot as plt

p = 0.5

n = 1

X = np.random.binomial(n,p,size=1000)

plt.hist(X,bins=‘auto’)

An alternative method in Python is to call stats.bernoulli.rvs to generate random
Bernoulli numbers.

# Python code to call scipy.stats library

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

p = 0.5

X = stats.bernoulli.rvs(p,size=1000)

plt.hist(X,bins=‘auto’);

Properties of Bernoulli random variables

Let us now derive a few key statistical properties of a Bernoulli random variable.

Theorem 3.6. If X ∼ Bernoulli(p), then

E[X] = p, E[X2] = p, Var[X] = p(1− p).

Proof. The expectation can be computed as

E[X] = (1)pX(1) + (0)pX(0) = (1)(p) + (0)(1− p) = p.

The second moment is

E[X2] = (12)(p) + (02)(1− p) = p.

Therefore, the variance is

Var[X] = E[X2]− µ2 = p− p2 = p(1− p).

□
A useful property of the Python code is that we can construct an object rv. Then we

can call rv’s attributes to determine its mean, variance, etc.
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# Python code to generate a Bernoulli rv object

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

p = 0.5

rv = stats.bernoulli(p)

mean, var = rv.stats(moments=‘mv’)

print(mean, var)

In both MATLAB and Python, we can plot the PMF of a Bernoulli random variable,
such as the one shown in Figure 3.23. To do this in MATLAB, we call the function binopdf,
with the evaluation points specified by x.

0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Figure 3.23: An example of a theoretical PMF (not the empirical histogram) plotted by MATLAB.

% MATLAB code to plot the PMF of a Bernoulli

p = 0.3;

x = [0,1];

f = binopdf(x,1,p);

stem(x, f, ‘bo’, ‘LineWidth’, 8);

In Python, we construct a random variable rv. With rv, we can call its PMF rv.pmf:

# Python code to plot the PMF of a Bernoulli

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

p = 0.3

rv = stats.bernoulli(p)

x = np.linspace(0, 1, 2)

f = rv.pmf(x)

plt.plot(x, f, ‘bo’, ms=10);

plt.vlines(x, 0, f, colors=‘b’, lw=5, alpha=0.5);
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When will a Bernoulli random variable have the maximum variance?

Let us take a look at the variance of the Bernoulli random variable. For any given p, the
variance is p(1−p). This is a quadratic equation. If we let V (p) = p(1−p), we can show that
the maximum is attained at p = 1/2. To see this, take the derivative of V (p) with respect
to p. This will give us d

dpV (p) = 1 − 2p. Equating to zero yields 1 − 2p = 0, so p = 1/2.

We know that p = 1/2 is a maximum and not a minimum point because the second order
derivative V ′′(p) = −2, which is negative. Therefore V (p) is maximized at p = 1/2. Now,
since 0 ≤ p ≤ 1, we also know that V (0) = 0 and V (1) = 0. Therefore, the variance is
minimized at p = 0 and p = 1. Figure 3.24 shows a graph of the variance.

Figure 3.24: The variance of a Bernoulli reaches maximum at p = 1/2.

Does this result make sense? Why is the variance maximized at p = 1/2? If we think
about this problem more carefully, we realize that a Bernoulli random variable represents a
coin-flip experiment. If the coin is biased such that it always gives heads, on the one hand,
it is certainly a bad coin. However, on the other hand, the variance is zero because there
is nothing to vary; you will certainly get heads. The same situation happens if the coin is
biased towards tails. However, if the coin is fair, i.e., p = 1/2, then the variance is large
because we only have a 50% chance of getting a head or a tail whenever we flip a coin.
Nothing is certain in this case. Therefore, the maximum variance happening at p = 1/2
matches our intuition.

Rademacher random variable

A slight variation of the Bernoulli random variable is the Rademacher random variable,
which has two states: +1 and −1. The probability getting +1 and −1 is 1/2. Therefore, the
PMF of a Rademacher random variable is

pX(−1) = 1

2
, and pX(+1) =

1

2
.

Practice Exercise 3.8. Show that if X is a Rademacher random variable then
(X + 1)/2 ∼ Bernoulli(1/2). Also show the converse: If Y ∼ Bernoulli(1/2) then 2Y −1
is a Rademacher random variable.

Solution. Since X can either be +1 or −1, we show that if X = +1 then (X+1)/2 = 1
and if X = −1 then (X + 1)/2 = 0. The probabilities of getting +1 and −1 are equal.
Thus, the probabilities of getting (X +1)/2 = 1 and 0 are also equal. So the resulting
random variable is Bernoulli(1/2). The other direction can be proved similarly.
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Bernoulli in social networks: the Erdős-Rényi graph

The study of networks is a big branch of modern data science. It includes social networks,
computer networks, traffic networks, etc. The history of network science is very long, but
one of the most basic models of a network is the Erdős-Rényi graph, named after Paul
Erdős and Alfréd Rényi. The underlying probabilistic model of the Erdős-Rényi graph is
the Bernoulli random variable.

To see how a graph can be constructed from a Bernoulli random variable, we first
introduce the concept of a graph. A graph contains two elements: nodes and edges. For
node i and node j, we denote the edge connecting i and j as Aij . Therefore, if we have N
nodes, then we can construct a matrix A of size N ×N . We call this matrix the adjacency
matrix. For example, the adjacency matrix

A =


0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 0


will have edges for node pairs (1, 2), (1, 3), and (3, 4). Note that in this example we assume
that the adjacency matrix is symmetric, meaning that the graph is undirected. The “1” in
the adjacency matrix indicates there is an edge, and “0” indicates there is no edge. So A
represents a binary graph.

The Erdős-Rényi graph model says that the probability of getting an edge is an inde-
pendent Bernoulli random variable. That is

Aij ∼ Bernoulli(p),

for i < j. If we model the graph in this way, then the parameter p will control the density
of the graph. High values of p mean that there is a higher chance for an edge to be present.
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Figure 3.25: The Erdős-Rényi graph. [Top] The graphs. [Bottom] The adjacency matrices.
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To illustrate the idea of an Erdős-Rényi graph, we show in Figure 3.25 a graph of
40 nodes. The edges are randomly selected by flipping a Bernoulli random variable with
parameter p = 0.3, 0.5, 0.7, 0.9. As we can see in the figure, a small value of p gives a graph
with very sparse connectivity, whereas a large value of p gives a very densely connected
graph. The bottom row of Figure 3.25 shows the corresponding adjacency matrices. Here,
a white pixel denotes “1” in the matrix and a black pixel denotes “0” in the matrix.

While Erdős-Rényi graphs are elementary, their variations can be realistic models of
social networks. The stochastic block model is one such model. In a stochastic block model,
nodes form small communities within a large network. For example, there are many majors
in a university. Students within the same major tend to have more interactions than with
students of another major. The stochastic block model achieves this goal by partitioning
the nodes into communities. Within each community, the nodes can have a high degree of
connectivity. Across different communities, the connectivity will be much lower. Figure 3.26
illustrates a network and the corresponding adjacency matrix. In this example, the network
has three communities.
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Figure 3.26: A stochastic block model containing three communities. [Left] The graph. [Right] The
adjacency matrix.

In network analysis, one of the biggest problems is determining the community struc-
ture and recovering the underlying probabilities. The former task is about grouping the
nodes into blocks. This is a nontrivial problem because in practice the nodes are never
arranged nicely, as shown in Figure 3.26. For example, why should Alice be node 1 and
Bob be node 2? Since we never know the correct ordering of the nodes, partitioning the
nodes into blocks requires various estimation techniques such as clustering or iterative esti-
mation. Recovering the underlying probability is also not easy. Given an adjacency matrix,
why can we assume that the underlying network is a stochastic block model? Even if the
model is correct, there will be imperfect grouping in the previous step. As such, estimat-
ing the underlying probability in the presence of these uncertainties would pose additional
challenges.

Today, network analysis remains one of the hottest areas in data science. Its importance
derives from its broad scope and impact. It can be used to analyze social networks, opinion
polls, marketing, or even genome analysis. Nevertheless, the starting point of these advanced
subjects is the Bernoulli random variable, the random variable of a coin flip!
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3.5.2 Binomial random variable

Suppose we flip the coin n times count the number of heads. Since each coin flip is a random
variable (Bernoulli), the sum is also a random variable. It turns out that this new random
variable is the binomial random variable.

Definition 3.9. Let X be a binomial random variable. Then, the PMF of X is

pX(k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n,

where 0 < p < 1 is the binomial parameter, and n is the total number of states. We
write

X ∼ Binomial(n, p)

to say that X is drawn from a binomial distribution with a parameter p of size n.

To understand the meaning of a binomial random variable, consider a simple experiment
consisting of flipping a coin three times. We know that all possible cases are HHH, HHT,
HTH, THH, TTH, THT, HTT and TTT. Now, suppose we define X = number of heads.
We want to write down the probability mass function. Effectively, we ask: What is the
probability of getting 0 head, one head, two heads, and three heads? We can, of course,
count and get the answer right away for a fair coin. However, suppose the coin is unfair,
i.e., the probability of getting a head is p whereas that of a tail is 1− p. The probability of
getting each of the 8 cases is shown in Figure 3.27 below.

Figure 3.27: The probability of getting k heads out of n = 3 coins.

Here are the detailed calculations. Let us start with X = 3.

pX(3) = P[{HHH}]
= P[{H} ∩ {H} ∩ {H}]
(a)
= P[{H}]P[{H}]P[{H}]
(b)
= p3,

where (a) holds because the three events are independent. (Recall that if A and B are
independent then P[A ∩ B] = P[A]P[B].) (b) holds because each P[{H}] = p by definition.
With exactly the same argument, we can show that pX(0) = P[{TTT}] = (1− p)3.
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Now, let us look at pX(2), i.e., 2 heads. This probability can be calculated as follows:

pX(2) = P[{HHT} ∪ {HTH} ∪ {THH}]
(c)
= P[{HHT}] + P[{HTH}] + P[{THH}]
(d)
= p2(1− p) + p2(1− p) + p2(1− p) = 3p2(1− p),

where (c) holds because the three events HHT, HTH and THH are disjoint in the sample
space. Note that we are not using the independence argument in (c) but the disjoint argu-
ment. We should not confuse the two. The step in (d) uses independence, because each coin
flip is independent.

The above calculation shows an interesting phenomenon: Although the three events
HHT, HTH, and THH are different (in fact, disjoint), the number of heads in all the cases
is the same. This happens because when counting the number of heads, the ordering of the
heads and tails does not matter. So the same problem can be formulated as finding the
number of combinations of { 2 heads and 1 tail }, which in our case is

(
3
2

)
= 3.

To complete the story, let us also try pX(1). This probability is

pX(1) = P[{TTH} ∪ {HTT} ∪ {THT}] = 3p(1− p)2.

Again, we see that the combination
(
3
1

)
= 3 appears in front of the p(1− p)2.

In general, the way to interpret the binomial random variable is to decouple the prob-
abilities p, (1− p), and the number of combinations

(
n
k

)
:

pX(k) =

(
n

k

)
︸ ︷︷ ︸

number of combinations

pk︸ ︷︷ ︸
prob getting k H’s

(1− p)n−k︸ ︷︷ ︸
prob getting n− k T’s

.

The running index k should go with 0, 1, . . . , n. It starts with 0 because there could be zero
heads in the sample space. Furthermore, we note that in this definition, two parameters are
driving a binomial random variable: the number of Bernoulli trials n and the underlying
probability for each coin flip p. As such, the notation for a binomial random variable is
Binomial(n, p), with two arguments.

The histogram of a binomial random variable is shown in Figure 3.28(a). Here, we con-
sider the example where n = 10 and p = 0.5. To generate the histogram, we use 5000 samples.
In MATLAB and Python, generating binomial random variables as in Figure 3.28(a) can
be done by calling binornd and np.random.binomial.

% MATLAB code to generate 5000 Binomial random variables

p = 0.5;

n = 10;

X = binornd(n,p,[5000,1]);

[num, ~] = hist(X, 10);

bar( num,‘FaceColor’,[0.4, 0.4, 0.8]);

# Python code to generate 5000 Binomial random variables

import numpy as np

import matplotlib.pyplot as plt
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Figure 3.28: An example of a binomial distribution with n = 10, p = 0.5.

p = 0.5

n = 10

X = np.random.binomial(n,p,size=5000)

plt.hist(X,bins=‘auto’);

Generating the ideal PMF of a binomial random variable as shown in Figure 3.28(b)
can be done by calling binopdf in MATLAB. In Python, we can define a random variable
rv through stats.binom, and call the PMF using rv.pmf.

% MATLAB code to generate a binomial PMF

p = 0.5;

n = 10;

x = 0:10;

f = binopdf(x,n,p);

stem(x, f, ’o’, ’LineWidth’, 8, ’Color’, [0.8, 0.4, 0.4]);

# Python code to generate a binomial PMF

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

p = 0.5

n = 10

rv = stats.binom(n,p)

x = np.arange(11)

f = rv.pmf(x)

plt.plot(x, f, ’bo’, ms=10);

plt.vlines(x, 0, f, colors=’b’, lw=5, alpha=0.5);

The shape of the binomial PMF is shown in Figure 3.29. In this set of figures, we vary
one of the two parameters n and p while keeping the other fixed. In Figure 3.29(a), we fix
n = 60 and plot three sets of p = 0.1, 0.5, 0.9. For small p the PMF is skewed towards the
left, and for large p the PMF is skewed toward the right. Figure 3.29(b) shows the PMF
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for a fixed p = 0.5. As we increase n, the centroid of the PMF moves towards the right.
Thus we should expect the mean of a binomial random variable to increase with p. Another
interesting observation is that as n increases, the shape of the PMF approaches the Gaussian
function (the bell-shaped curve). We will explain the reason for this when we discuss the
Central Limit Theorem.
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Figure 3.29: PMFs of a binomial random variable X ∼ Binomial(n, p). (a) We assume that n = 60. By
varying the probability p, we see that the PMF shifts from the left to the right, and the shape changes.
(b) We assume that p = 0.5. By varying the number of trials, the PMF shifts and the shape becomes
more “bell-shaped.”

The expectation, second moment, and variance of a binomial random variable are
summarized in Theorem 3.7.

Theorem 3.7. If X ∼ Binomial(n, p), then

E[X] = np,

E[X2] = np(np+ (1− p)),

Var[X] = np(1− p).

We will prove that E[X] = np using the first principle. For E[X2] and Var[X], we will skip
the proofs here and will introduce a “shortcut” later.

Proof. Let us start with the definition.

E[X] =

n∑
k=0

k ·
(
n

k

)
pk(1− p)n−k

=

n∑
k=0

k · n!

k!(n− k)!
pk(1− p)n−k

= 0 · n!

0!(n− 0)!
p0(1− p)n−0︸ ︷︷ ︸
0

+

n∑
k=1

k · n!

k!(n− k)!
pk(1− p)n−k

=

n∑
k=1

n!

(k − 1)!(n− k)!
pk(1− p)n−k.
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Note that we have shifted the index from k = 0 to k = 1. Now let us apply a trick:

E[X] =

n∑
k=1

n!

(k − 1)!(n− k)!
pk(1− p)n−k

=

n∑
k=1

n!

(k − 1)!(n− k − 1 + 1)!
pk(1− p)n−k.

Using this trick, we can show that

n∑
k=1

n!

(k − 1)!(n− k − 1 + 1)!
pk(1− p)n−k

=

n∑
k=1

n!

(k − 1)!((n− 1)− (k − 1))!
pk(1− p)n−k

=

n∑
k=1

n(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
pk(1− p)n−k

= np

n∑
k=1

(n− 1)!

(k − 1)!((n− 1)− (k − 1))!
pk−1(1− p)n−k

With a simple substitution of ℓ = k − 1, the above equation can be rewritten as

E[X] = np ·
n−1∑
ℓ=0

(n− 1)!

ℓ!((n− 1)− ℓ)!
pℓ(1− p)n−1−ℓ

= np ·
n−1∑
ℓ=0

(
n− 1

k

)
pℓ(1− p)n−1−ℓ︸ ︷︷ ︸

summing PMF of Binomial(n−1,p)

= np.

□
In MATLAB, the mean and variance of a binomial random variable can be found by

calling the command binostat(n,p) (MATLAB).
In Python, the command is rv = stats.binom(n,p) followed by calling rv.stats.

% MATLAB code to compute the mean and var of a binomial rv

p = 0.5;

n = 10;

[M,V] = binostat(n, p)

# Python code to compute the mean and var of a binomial rv

import scipy.stats as stats

p = 0.5

n = 10

rv = stats.binom(n,p)

M, V = rv.stats(moments=‘mv’)

print(M, V)
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An alternative view of the binomial random variable. As we discussed, the origin of a
binomial random variable is the sum of a sequence of Bernoulli random variables. Because
of this intrinsic definition, we can derive some useful results by exploiting this fact. To do so,
let us define I1, . . . , In as a sequence of Bernoulli random variables with Ij ∼ Bernoulli(p)
for all i = 1, . . . , n. Then the resulting variable

X = I1 + I2 + · · ·+ In

is a binomial random variable of size n and parameter p. Using this definition, we can
compute the expectation as follows:

E[X] = E[I1 + I2 + · · ·+ In]

(a)
= E[I1] + E[I2] + · · ·+ E[In]
= p+ p+ · · ·+ p

= np.

In this derivation, the step (a) depends on a useful fact about expectation (which we have not
yet proved): For any two random variables X and Y , it holds that E[X+Y ] = E[X]+E[Y ].
Therefore, we can show that the expectation of X is np. This line of argument not only
simplifies the proof but also provides a good intuition of the expectation. If each coin flip
has an expectation of E[Ii] = p, then the expectation of the sum should be simply n times
of p, given np.

How about the variance? Again, we are going to use a very useful fact about variance:
If two random variables X and Y are independent, then Var[X + Y ] = Var[X] + Var[Y ].
With this result, we can show that

Var[X] = Var[I1 + · · ·+ In]

= Var[I1] + · · ·+Var[In]

= p(1− p) + · · ·+ p(1− p)

= np(1− p).

Finally, using the fact that Var[X] = E[X2]− µ2, we can show that

E[X2] = Var[X] + µ2

= np(1− p) + (np)2.

Practice Exercise 3.9. Show that the binomial PMF sums to 1.

Solution. We use the binomial theorem to prove this result:

n∑
k=0

pX(k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1.

The CDF of the binomial random variable is not very informative. It is basically the
cumulative sum of the PMF:

FX(k) =

k∑
ℓ=0

(
n

ℓ

)
pℓ(1− p)n−ℓ.
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Figure 3.30: PMF and CDF of a binomial random variable X ∼ Binomial(n, p).

The shapes of the PMF and the CDF is shown in Figure 3.30.
In MATLAB, plotting the CDF of a binomial can be done by calling the function

binocdf. You may also call f = binopdf(x,n,p), and define F = cumsum(f) as the cumu-
lative sum of the PMF. In Python, the corresponding command is rv = stats.binom(n,p)

followed by rv.cdf.

% MATLAB code to compute the mean and var of a binomial rv

x = 0:10;

p = 0.5;

n = 10;

F = binocdf(x,n,p);

figure; stairs(x,F,‘.-’,‘LineWidth’,4,‘MarkerSize’,30);

# Python code to compute the mean and var of a binomial rv

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

p = 0.5

n = 10

rv = stats.binom(n,p)

x = np.arange(11)

F = rv.cdf(x)

plt.plot(x, F, ’bo’, ms=10);

plt.vlines(x, 0, F, colors=’b’, lw=5, alpha=0.5);

3.5.3 Geometric random variable

In some applications, we are interested in trying a binary experiment until we succeed. For
example, we may want to keep calling someone until the person picks up the call. In this
case, the random variable can be defined as the outcome of many failures followed by a final
success. This is called the geometric random variable.

Definition 3.10. Let X be a geometric random variable. Then, the PMF of X is

pX(k) = (1− p)k−1p, k = 1, 2, . . . ,
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where 0 < p < 1 is the geometric parameter. We write

X ∼ Geometric(p)

to say that X is drawn from a geometric distribution with a parameter p.

A geometric random variable is easy to understand. We define it as Bernoulli trials with
k − 1 consecutive failures followed by one success. This can be seen from the definition:

pX(k) = (1− p)k−1︸ ︷︷ ︸
k − 1 failures

p︸ ︷︷ ︸
final success

.

Note that in geometric random variables, there is no
(
n
k

)
because we must have k − 1

consecutive failures before one success. There is no alternative combination of the sequence.
The histogram and PMF of a geometric random variable are illustrated in Figure 3.31.

Here, we assume that p = 0.5.
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Figure 3.31: An example of a geometric distribution with p = 0.5.

In MATLAB, generating geometric random variables can be done by calling the com-
mands geornd. In Python, it is np.random.geometric.

% MATLAB code to generate 1000 geometric random variables

p = 0.5;

X = geornd(p,[5000,1]);

[num, ~] = hist(X, 0:10);

bar(0:10, num, ‘FaceColor’,[0.4, 0.4, 0.8]);

# Python code to generate 1000 geometric random variables

import numpy as np

import matplotlib.pyplot as plt

p = 0.5

X = np.random.geometric(p,size=1000)

plt.hist(X,bins=‘auto’);

To generate the PMF plots, in MATLAB we call geopdf and in Python we call
rv = stats.geom followed by rv.pmf.
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% MATLAB code to generate geometric PMF

p = 0.5; x = 0:10;

f = geopdf(x,p);

stem(x, f, ‘o’, ‘LineWidth’, 8, ‘Color’, [0.8, 0.4, 0.4]);

# Python code to generate 1000 geometric random variables

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

x = np.arange(1,11)

rv = stats.geom(p)

f = rv.pmf(x)

plt.plot(x, f, ‘bo’, ms=8, label=‘geom pmf’)

plt.vlines(x, 0, f, colors=‘b’, lw=5, alpha=0.5)

Practice Exercise 3.10. Show that the geometric PMF sums to one.

Solution. We can apply infinite series to show the result:

∞∑
k=1

pX(k) =

∞∑
k=1

(1− p)k−1p

= p ·
∞∑
k=1

(1− p)k−1, ℓ = k − 1

= p ·
∞∑
ℓ=0

(1− p)ℓ

= p · 1

1− (1− p)
= 1.

It is interesting to compare the shape of the PMFs for various values of p. In Figure 3.32
we show the PMFs. We vary the parameter p = 0.25, 0.5, 0.9. For small p, the PMF starts
with a low value and decays at a slow speed. The opposite happens for a large p, where the
PMF starts with a high value and decays rapidly.

Furthermore, we can derive the following properties of the geometric random variable.

Theorem 3.8. If X ∼ Geometric(p), then

E[X] =
1

p
, E[X2] =

2

p2
− 1

p
, (3.16)

Var[X] =
1− p

p2
.

Proof. We will prove that the mean is 1/p and leave the second moment and variance as
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Figure 3.32: PMFs of a geometric random variable X ∼ Geometric(p).

an exercise.

E[X] =

∞∑
k=1

kp(1− p)k−1 = p

( ∞∑
k=1

k(1− p)k−1

)
(a)
= p

(
1

(1− (1− p))2

)
=

1

p
,

where (a) follows from the infinite series identity in Chapter 1.
□

3.5.4 Poisson random variable

In many physical systems, the arrivals of events are typically modeled as a Poisson ran-
dom variable, e.g., photon arrivals, electron emissions, and telephone call arrivals. In social
networks, the number of conversations per user can also be modeled as a Poisson. In e-
commerce, the number of transactions per paying user is again modeled using a Poisson.

Definition 3.11. Let X be a Poisson random variable. Then, the PMF of X is

pX(k) =
λk

k!
e−λ, k = 0, 1, 2, . . . ,

where λ > 0 is the Poisson rate. We write

X ∼ Poisson(λ)

to say that X is drawn from a Poisson distribution with a parameter λ.

In this definition, the parameter λ determines the rate of the arrival. The histogram and
PMF of a Poisson random variable are illustrated in Figure 3.33. Here, we assume that
λ = 1.

The MATLAB code and Python code used to generate the histogram are shown below.

% MATLAB code to generate 5000 Poisson numbers

lambda = 1;

X = poissrnd(lambda,[5000,1]);
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Figure 3.33: An example of a Poisson distribution with λ = 1.

[num, ~] = hist(X, 0:10);

bar(0:10, num, ‘FaceColor’,[0.4, 0.4, 0.8]);

# Python code to generate 5000 Poisson random variables

import numpy as np

import matplotlib.pyplot as plt

lambd = 1

X = np.random.poisson(lambd,size=5000)

plt.hist(X,bins=‘auto’);

For the PMF, in MATLAB we can call poisspdf, and in Python we can call rv.pmf
with rv = stats.poisson.

% MATLAB code to plot the Poisson PMF

lambda = 1;

x = 0:10;

f = poisspdf(x,lambda);

stem(x, f, ‘o’, ‘LineWidth’, 8, ‘Color’, [0.8, 0.4, 0.4]);

# Python code to plot the Poisson PMF

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

x = np.arange(0,11)

rv = stats.poisson(lambd)

f = rv.pmf(x)

plt.plot(x, f, ‘bo’, ms=8, label=‘geom pmf’)

plt.vlines(x, 0, f, colors=‘b’, lw=5, alpha=0.5)

The shape of the Poisson PMF changes with λ. As illustrated in Figure 3.34, pX(k) is
more concentrated at lower values for smaller λ and becomes spread out for larger λ. Thus,
we should expect that the mean and variance of a Poisson random variable will change
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together as a function of λ. In the same figure, we show the CDF of a Poisson random
variable. The CDF of a Poisson is

FX(k) = P[X ≤ k] =

k∑
ℓ=0

λℓ

ℓ!
e−λ. (3.17)
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Figure 3.34: A Poisson random variable using different λ’s. [Left] Probability mass function pX(k).
[Right] Cumulative distribution function FX(k).

Example 3.18. Let X be a Poisson random variable with parameter λ. Find P[X > 4]
and P[X ≤ 5].

Solution.

P[X > 4] = 1− P[X ≤ 4] = 1−
4∑

k=0

λk

k!
e−λ,

P[X ≤ 5] =

5∑
k=0

λk

k!
e−λ.

Practice Exercise 3.11. Show that the Poisson PMF sums to 1.

Solution. We use the exponential series to prove this result:

∞∑
k=0

pX(k) =

∞∑
k=0

λk

k!
e−λ = e−λ ·

∞∑
k=0

λk

k!︸ ︷︷ ︸
=eλ

= 1.

Poisson random variables in practice

(1) Computational photography. In computational photography, the Poisson random vari-
able is one of the most widely used models for photon arrivals. The reason pertains to the
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origin of the Poisson random variable, which we will discuss shortly. When photons are emit-
ted from the source, they travel through the medium as a sequence of independent events.
During the integration period of the camera, the photons are accumulated to generate a
voltage that is then translated to digital bits.

Figure 3.35: The Poisson random variable can be used to model photon arrivals.

If we assume that the photon arrival rate is α (photons per second), and suppose that
the total amount of integration time is t, then the average number of photons that the sensor
can see is αt. Let X be the number of photons seen during the integration time. Then if we
follow the Poisson model, we can write down the PMF of X:

P[X = k] =
(αt)k

k!
e−αt.

Therefore, if a pixel is bright, meaning that α is large, then X will have a higher likelihood
of landing on a large number.

(2) Traffic model. The Poisson random variable can be used in many other problems. For
example, we can use it to model the number of passengers on a bus or the number of spam
phone calls. The required modification to Figure 3.35 is almost trivial: merely replace the
photons with your favorite cartoons, e.g., a person or a phone, as shown in Figure 3.36. In
the United States, shared-ride services such as Uber and Lyft need to model the vacant cars
and the passengers. As long as they have an arrival rate and certain degrees of independence
between events, the Poisson random variable will be a good model.

As you can see from these examples, the Poisson random variable has broad applica-
bility. Before we continue our discussion of its applications, let us introduce a few concepts
related to the Poisson random variable.

Properties of a Poisson random variable

We now derive the mean and variance of a Poisson random variable.

Theorem 3.9. If X ∼ Poisson(λ), then

E[X] = λ, E[X2] = λ+ λ2, (3.18)

Var[X] = λ.
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Figure 3.36: The Poisson random variable can be used to model passenger arrivals and the number of
phone calls, and can be used by Uber or Lyft to provide shared rides.

Proof. Let us first prove the mean. It can be shown that

E[X] =

∞∑
k=0

k · λ
k

k!
e−λ =

∞∑
k=1

λk

(k − 1)!
e−λ

= λe−λ
∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
ℓ=0

λℓ

ℓ!
= λe−λeλ = λ.

The second moment can be computed as

E[X2] =

∞∑
k=0

k2 · λ
k

k!
e−λ

=

∞∑
k=0

k · λk

(k − 1)!
e−λ

=

∞∑
k=0

(k−1 + 1) · λk

(k − 1)!
e−λ

=

∞∑
k=1

(k − 1) · λk

(k − 1)!
e−λ +

∞∑
k=1

λk

(k − 1)!
e−λ

= λ2 ·
∞∑
k=2

λk−2e−λ

(k − 2)!︸ ︷︷ ︸
=1

+ λ ·
∞∑
k=1

λk−1e−λ

(k − 1)!︸ ︷︷ ︸
=1

.

The variance can be computed using Var[X] = E[X2]− µ2.
□

To compute the mean and variance of a Poisson random variable, we can call poisstat
in MATLAB and rv.stats(moments=‘mv’) in Python.

% MATLAB code to compute Poisson statistics

lambda = 1;

[M,V] = poisstat(lambda);
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# Python code to compute Poisson statistics

import scipy.stats as stats

lambd = 1

rv = stats.poisson(lambd)

M, V = rv.stats(moments=’mv’)

The Poisson random variable is special in the sense that the mean and the variance are
equal. That is, if the mean arrival number is higher, the variance is also higher. This is very
different from some other random variables, e.g., the normal random variable where the mean
and variance are independent. For certain engineering applications such as photography, this
plays an important role in defining the signal-to-noise ratio. We will come back to this point
later.

Origin of the Poisson random variable

We now address one of the most important questions about the Poisson random variable:
Where does it come from? Answering this question is useful because the derivation process
will reveal the underlying assumptions that lead to the Poisson PMF. When you change
the problem setting, you will know when the Poisson PMF will hold and when the Poisson
PMF will fail.

Our approach to addressing this problem is to consider the photon arrival process.
(As we have shown, there is conceptually no difference if you replace the photons with
pedestrians, passengers, or phone calls.) Our derivation follows the argument of J. Goodman,
Statistical Optics, Section 3.7.2.

To begin with, we consider a photon arrival process. The total number of photons
observed over an integration time t is defined as X(t). Because X(t) is a Poisson random
variable, its arguments must be integers. The probability of observing X(t) = k is therefore
P[X(t) = k]. Figure 3.37 illustrates the notations and concepts.

Figure 3.37: Notations for deriving the Poisson PMF.

We propose three hypotheses with the photon arrival process:

� For sufficiently small ∆t, the probability of a small impulse occurring in the time
interval [t, t+∆t] is equal to the product of ∆t and the rate λ, i.e.,

P[X(t+∆t)−X(t) = 1] = λ∆t.

This is a linearity assumption, which typically holds for a short duration of time.
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� For sufficiently small ∆t, the probability that more than one impulse falls in ∆t is
negligible. Thus, we have that P[X(t+∆t)−X(t) = 0] = 1− λ∆t.

� The number of impulses in non-overlapping time intervals is independent.

The significance of these three hypotheses is that if the underlying photon arrival process
violates any of these assumptions, then the Poisson PMF will not hold. One example is the
presence of scattering effects, where a photon has a certain probability of going off due to
the scattering medium and a certain probability of coming back. In this case, the events will
no longer be independent.

Assuming that these hypotheses hold, then at time t+∆t, the probability of observing
X(t+∆t) = k can be computed as

P[X(t+∆t) = k]

= P[X(t) = k] · (1− λ∆t)︸ ︷︷ ︸
=P[X(t+∆t)−X(t)=0]

+ P[X(t) = k − 1] · (λ∆t)︸ ︷︷ ︸
=P[X(t+∆t)−X(t)=1]

= P[X(t) = k]− P[X(t) = k]λ∆t+ P[X(t) = k − 1]λ∆t.

By rearranging the terms we show that

P[X(t+∆t) = k]− P[X(t) = k]

∆t
= λ

(
P[X(t) = k − 1]− P[X(t) = k]

)
.

Setting the limit of ∆t→ 0, we arrive at an ordinary differential equation

d

dt
P[X(t) = k] = λ

(
P[X(t) = k − 1]− P[X(t) = k]

)
. (3.19)

We claim that the Poisson PMF, i.e.,

P[X(t) = k] =
(λt)k

k!
e−λt,

would solve this differential equation. To see this, we substitute the PMF into the equation.
The left-hand side gives us

d

dt
P[X(t) = k] =

d

dt

(
(λt)k

k!
e−λt

)
= λk

(λt)k−1

k!
e−λt + (−λ) (λt)

k

k!
e−λt

= λ
(λt)k−1

k!
e−λt − λ

(λt)k

k!
e−λt

= λ

(
P[X(t) = k − 1]− P[X(t) = k]

)
,

which is the right-hand side of the equation. To retrieve the basic form of Poisson, we can
just set t = 1 in the PMF so that

P[X(1) = k] =
λk

k!
e−λ.
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The origin of Poisson random variables

� We assume independent arrivals.

� Probability of seeing one event is linear with the arrival rate.

� Time interval is short enough so that you see either one event or no event.

� Poisson is derived by solving a differential equation based on these assumptions.

� Poisson becomes invalid when these assumptions are violated, e.g., in the case
of scattering of photons due to turbid medium.

There is an alternative approach to deriving the Poisson PMF. The idea is to drive
the parameter n in the binomial random variable to infinity while pushing p to zero. In this
limit, the binomial PMF will converge to the Poisson PMF. We will discuss this shortly.
However, we recommend the physics approach we have just described because it has a rich
meaning and allows us to validate our assumptions.

Poisson approximation to binomial

We present one additional result about the Poisson random variable. The result shows that
Poisson can be regarded as a limiting distribution of a binomial random variable.

Theorem 3.10. (Poisson approximation to binomial). For small p and large n,(
n

k

)
pk(1− p)n−k ≈ λk

k!
e−λ,

where λ
def
= np.

Before we prove the result, let us see how close the approximation can be. In Figure 3.38,
we show a binomial distribution and a Poisson approximation. The closeness of the approx-
imation can easily be seen.

In MATLAB, the code to approximate a binomial distribution with a Poisson formula
is shown below. Here, we draw 10,000 random binomial numbers and plot their histogram.
On top of the plot, we use poisspdf to compute the Poisson PMF. This gives us Figure 3.38.
A similar set of commands can be called in Python.

% MATLAB code to approximate binomial using Poisson

n = 1000; p = 0.05;

X = binornd(n,p,[10000,1]);

t = 0:100;

[num,val] = hist(X,t);

lambda = n*p;

f_pois = poisspdf(t,lambda);

bar(num/10000,‘FaceColor’,[0.9 0.9 0],‘BarWidth’,1); hold on;

plot(f_pois, ‘LineWidth’, 4);
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Figure 3.38: Poisson approximation of binomial distribution.

# Python code to approximate binomial using Poisson

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

n = 1000; p = 0.05

rv1 = stats.binom(n,p)

X = rv1.rvs(size=10000)

plt.figure(1); plt.hist(X,bins=np.arange(0,100));

rv2 = stats.poisson(n*p)

f = rv2.pmf(bin)

plt.figure(2); plt.plot(f);

Proof. Let λ = np. Then,(
n

k

)
pk(1− p)n−k =

n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n−k

=
λk

k!

n(n− 1) · · · (n− k + 1)

n · n · · ·n

(
1− λ

n

)n−k

=
λk

k!
(1)

(
1− 1

n

)
· · ·
(
1− k − 1

n

)
︸ ︷︷ ︸

→1 as n→∞

(
1− λ

n

)−k
︸ ︷︷ ︸
→1 as n→∞

(
1− λ

n

)n

=
λk

k!

(
1− λ

n

)n

.

We claim that
(
1− λ

n

)n → e−λ. This can be proved by noting that

log(1 + x) ≈ x, x≪ 1.

It then follows that log
(
1− λ

n

)
≈ −λ

n . Hence,
(
1− λ

n

)n ≈ e−λ

□
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Example 3.19. Consider an optical communication system. The bit arrival rate is 109

bits/sec, and the probability of having one error bit is 10−9. Suppose we want to find
the probability of having five error bits in one second.

Let X be the number of error bits. In one second there are 109 bits. Since we
do not know the location of these 5 bits, we have to enumerate all possibilities. This
leads to a binomial distribution. Using the binomial distribution, we know that the
probability of having k error bits is

P[X = k] =

(
n

k

)
pk(1− p)n−k

=

(
109

k

)
(10−9)k(1− 10−9)10

9−k.

This quantity is difficult to calculate in floating-point arithmetic.

Using the Poisson to binomial approximation, we can see that the probability can
be approximated by

P[X = k] ≈ λk

k!
e−λ,

where λ = np = 109(10−9) = 1. Setting k = 5 yields P[X = 5] ≈ 0.003.

Photon arrival statistics

Poisson random variables are useful in computer vision, but you may skip this discussion
if it is your first reading of the book.

The strong connection between Poisson statistics and physics makes the Poisson ran-
dom variable a very good fit for many physical experiments. Here we demonstrate an appli-
cation in modeling photon shot noise.

An image sensor is a photon sensitive device which is used to detect incoming photons.
In the simplest setting, we can model a pixel in the object plane as Xm,n, for some 2D
coordinate [m,n] ∈ R2. Written as an array, an M × N image in the object plane can be
visualized as

X = object =

X1,1 X1,2 · · · X1,N

...
...

. . .
...

XM,1 XM,2 · · · XM,N

 .

Without loss of generality, we assume that Xm,n is normalized so that 0 ≤ Xm,n ≤ 1 for
every coordinate [m,n]. To model the brightness, we multiply Xm,n by a scalar α > 0. If
a pixel αXm,n has a large value, then it is a bright pixel; conversely, if αXm,n has a small
value, then it is a dark pixel. At a particular pixel location [m,n] ∈ R2, the observed pixel
value Ym,n is a random variable following the Poisson statistics. This situation is illustrated
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in Figure 3.39, where we see that an object-plane pixel will generate an observed pixel
through the Poisson PMF.1

Figure 3.39: The image formation process is governed by the Poisson random variable. Given a pixel
in the object plane Xm,n, the observed pixel Ym,n is a Poisson random variable with mean αXm,n.
Therefore, a brighter pixel will have a higher Poisson mean, whereas a darker pixel will have a lower
Poisson mean.

Written as an array, the image is

Y = observed image = Poisson

{
αX

}

=


Poisson{αX1,1} Poisson{αX1,2} · · · Poisson{αX1,N}
Poisson{αX2,1} Poisson{αX2,2} · · · Poisson{αX2,N}

...
...

. . .
...

Poisson{αXM,1} Poisson{αXM,2} · · · Poisson{αXM,N}

 .

Here, by Poisson{αXm,n} we mean that Ym,n is a random integer with probability mass

P[Ym,n = k] =
[αXm,n]

k

k!
e−αXm,n .

Note that this model implies that the images seen by our cameras are more or less
an array of Poisson random variables. (We say “more or less” because of other sources of
uncertainties such as read noise, dark current, etc.) Because the observed pixels Ym,n are
random variables, they fluctuate about the mean values, and hence they are noisy. We refer
to this type of random fluctuation as the shot noise. The impact of the shot noise can be
seen in Figure 3.40. Here, we vary the sensor gain level α. We see that for small α the image
is dark and has much random fluctuation. As α increases, the image becomes brighter and
the fluctuation becomes smaller.

In MATLAB, simulating the Poisson photon arrival process for an image requires the
image-processing toolbox. The command to read an image is imread. Depending on the data
type, the input array could be unit8 integers. To convert them to floating-point numbers
between 0 and 1, we use the command im2double. Drawing Poisson measurements from the
clean image is done using poissrnd. Finally, we can use imshow to display the image.

% MATLAB code to simulate a photon arrival process

x0 = im2double(imread(’cameraman.tif’));

1The color of an image is often handled by a color filter array, which can be thought of as a wavelength
selector that allows a specific wavelength to pass through.

162



3.5. COMMON DISCRETE RANDOM VARIABLES

 = 10  = 100  = 1000

Figure 3.40: Illustration of the Poisson random variable in photographing images. Here, α denotes the
gain level of the sensor: Larger α means that there are more photons coming to the sensor.

X = poissrnd(10*x0);

figure(1); imshow(x0, []);

figure(2); imshow(X, []);

Similar commands can be found in Python with the help of the cv2 library. When
reading an image, we call cv2.imread. The option 0 is used to read a gray-scale image;
otherwise, we will have a 3-channel color image. The division /255 ensures that the input
array ranges between 0 to 1. Generating the Poisson random numbers can be done using
np.random.poisson, or by calling the statistics library with stats.poisson.rvs(10*x0).
To display the images, we call plt.imshow, with the color map option set to cmap = ’gray’.

# Python code code to simulate a photon arrival process

import numpy as np

import matplotlib.pyplot as plt

import cv2

x0 = cv2.imread(’./cameraman.tif’, 0)/255

plt.figure(1); plt.imshow(x0,cmap=’gray’);

X = np.random.poisson(10*x0)

plt.figure(2); plt.imshow(X, cmap=’gray’);

Why study Poisson? What is shot noise?

� The Poisson random variable is used to model photon arrivals.

� Shot noise is the random fluctuation of the photon counts at the pixels. Shot
noise is present even if you have an ideal sensor.

Signal-to-noise ratio of Poisson

Now let us answer a question we asked before. A Poisson random variable has a variance
equal to the mean. Thus, if the scene is brighter, the variance will be larger. How come our
simulation in Figure 3.40 shows that the fluctuation becomes smaller as the scene becomes
brighter?
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The answer to this question lies in the signal-to-noise ratio (SNR) of the Poisson
random variable. The SNR of an image defines its quality. The higher the SNR, the better
the image. The mathematical definition of SNR is the ratio between the signal power and
the noise power. In our case, the SNR is

SNR =
signal power

noise power

def
=

E[Y ]√
Var[Y ]

(a)
=

λ√
λ
=
√
λ,

where Y = Ym,n is one of the observed pixels and λ = αXm,n is the the corresponding object
pixel. In this equation, the step (a) uses the properties of the Poisson random variable Y
where E[Y ] = Var[Y ] = λ. The result SNR =

√
λ is very informative. It says that if the

underlying mean photon flux (which is λ) increases, the SNR increases at a rate of
√
λ.

So, yes, the variance becomes larger when the scene is brighter. However, the gain in signal
E[Y ] overrides the gain in noise

√
Var[Y ]. As a result, the big fluctuation in bright images

is compensated by the strong signal. Thus, to minimize the shot noise one has to use a
longer exposure to increase the mean photon flux. When the scene is dark and the aperture
is small, shot noise is unavoidable.

Poisson modeling is useful for describing the problem. However, the actual engineering
question is that, given a noise observation Ym,n, how would you reconstruct the clean image
Xm,n? This is a very difficult inverse problem. The typical strategy is to exploit the spatial
correlations between nearby pixels, e.g., usually smooth except along some sharp edges.
Other information about the image, e.g., the likelihood of obtaining texture patterns, can
also be leveraged. Modern image-processing methods are rich, ranging from classical filtering
techniques to deep neural networks. Static images are easier to recover because we can often
leverage multiple measurements of the same scene to boost the SNR. Dynamic scenes are
substantially harder when we need to track the motion of any underlying objects. There are
also newer image sensors with better photon sensitivity. The problem of imaging in the dark
is an important research topic in computational imaging. New solutions are developed at
the intersection of optics, signal processing, and machine learning.

The end of our discussions on photon statistics.

3.6 Summary

A random variable is so called because it can take more than one state. The probability mass
function specifies the probability for it to land on a particular state. Therefore, whenever
you think of a random variable you should immediately think of its PMF (or histogram
if you prefer). The PMF is a unique characterization of a random variable. Two random
variables with the same PMF are effectively the same random variables. (They are not
identical because there could be measure-zero sets where the two differ.) Once you have the
PMF, you can derive the CDF, expectation, moments, variance, and so on.

When your boss hands a dataset to you, which random variable (which model) should
you use? This is a very practical and deep question. We highlight three steps for you to
consider:
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� (i) Model selection: Which random variable is the best fit for our problem? Some-
times we know by physics that, for example, photon arrivals or internet traffic follow a
Poisson random variable. However, not all datasets can be easily described by simple
models. The models we have learned in this chapter are called the parametric mod-
els because they are characterized by one or two parameters. Some datasets require
nonparametric models, e.g., natural images, because they are just too complex. Some
data scientists refer to deep neural networks as parametric models because the net-
work weights are essentially the parameters. Some do not because when the number
of parameters is on the order of millions, sometimes even more than the number of
training samples, it seems more reasonable to call these models nonparametric. How-
ever, putting this debate aside, shortlisting a few candidate models based on prior
knowledge is essential. Even if you use deep neural networks, selecting between con-
volutional structures versus long short-term memory models is still a legitimate task
that requires an understanding of your problem.

� (ii) Parameter estimation: Suppose that you now have a candidate model; the next
task is to estimate the model parameter using the available training data. For example,
for Poisson we need to determine λ, and for binomial we need to determine (n, p). The
estimation problem is an inverse problem. Often we need to use the PMF to construct
certain optimization problems. By solving the optimization problem we will find the
best parameter (for that particular candidate model). Modern machine learning is
doing significantly better now than in the old days because optimization methods
have advanced greatly.

� (iii) Validation. When each candidate model has been optimized to best fit the data,
we still need to select the best model. This is done by running various testings. For
example, we can construct a validation set and check which model gives us the best
performance (such as classification rate or regression error). However, a model with
the best validation score is not necessarily the best model. Your goal should be to seek
a good model and not the best model because determining the best requires access to
the testing data, which we do not have. Everything being equal, the common wisdom
is to go with a simpler model because it is generally less susceptible to overfitting.
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3.8 Problems

Exercise 1. (Video Solution)
Consider an information source that produces numbers k in the set SX = {1, 2, 3, 4}. Find
and plot the PMF in the following cases:

(a) pk = p1/k, for k = 1, 2, 3, 4. Hint: Find p1.

(b) pk+1 = pk/2 for k = 1, 2, 3.

(c) pk+1 = pk/2
k for k = 1, 2, 3.

(d) Can the random variables in parts (a)-(c) be extended to take on values in the set
{1, 2, . . .}? Why or why not? Hint: You may use the fact that the series 1+ 1

2 +
1
3 + · · ·

diverges.

Exercise 2. (Video Solution)
Two dice are tossed. Let X be the absolute difference in the number of dots facing up.
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(a) Find and plot the PMF of X.

(b) Find the probability that X ≤ 2.

(c) Find E[X] and Var[X].

Exercise 3. (Video Solution)
Let X be a random variable with PMF pk = c/2k for k = 1, 2, . . ..

(a) Determine the value of c.

(b) Find P(X > 4) and P(6 ≤ X ≤ 8).

(c) Find E[X] and Var[X].

Exercise 4.
Let X be a random variable with PMF pk = c/2k for k = −1, 0, 1, 2, 3, 4, 5.

(a) Determine the value of c.

(b) Find P(1 ≤ X < 3) and P(1 < X ≤ 5).

(c) Find P[X3 < 5].

(d) Find the PMF and the CDF of X.

Exercise 5. (Video Solution)
A modem transmits a +2 voltage signal into a channel. The channel adds to this sig-
nal a noise term that is drawn from the set {0,−1,−2,−3} with respective probabilities
{4/10, 3/10, 2/10, 1/10}.

(a) Find the PMF of the output Y of the channel.

(b) What is the probability that the channel’s output is equal to the input of the channel?

(c) What is the probability that the channel’s output is positive?

(d) Find the expected value and variance of Y .

Exercise 6.
On a given day, your golf score takes values from numbers 1 through 10, with equal proba-
bility of getting each one. Assume that you play golf for three days, and assume that your
three performances are independent. Let X1, X2, and X3 be the scores that you get, and
let X be the minimum of these three numbers.

(a) Show that for any discrete random variable X, pX(k) = P(X > k − 1)− P(X > k).

(b) What is the probability P(X1 > k) for k = 1, . . . , 10?

(c) Use (a), determine the PMF pX(k), for k = 1, . . . , 10.
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(d) What is the average score improvement if you play just for one day compared with
playing for three days and taking the minimum?

Exercise 7. (Video Solution)
Let

g(X) =

{
1, if X > 10

0, otherwise.
and h(X) =

{
X − 10, if X − 10 > 0

0, otherwise.

(a) Find E[g(X)] for X as in Problem 1(a) with SX = {1, . . . , 15}.

(b) Find E[h(X)] for X as in Problem 1(b) with SX = {1, . . . , 15}.

Exercise 8. (Video Solution)
A voltage X is uniformly distributed in the set {−3, . . . , 3, 4}.

(a) Find the mean and variance of X.

(b) Find the mean and variance of Y = −2X2 + 3.

(c) Find the mean and variance of W = cos(πX/8).

(d) Find the mean and variance of Z = cos2(πX/8).

Exercise 9. (Video Solution)

(a) If X is Poisson(λ), compute E[1/(X + 1)].

(b) If X is Bernoulli(p) and Y is Bernoulli(q), compute E[(X + Y )3] if X and Y are
independent.

(c) Let X be a random variable with mean µ and variance σ2. Let ∆(θ) = E[(X − θ)2].
Find θ that minimizes the error ∆(θ).

(d) Suppose that X1, . . . , Xn are independent uniform random variables in {0, 1, . . . , 100}.
Evaluate P[min(X1, . . . , Xn) > ℓ] for any ℓ ∈ {0, 1, . . . , 100}.

Exercise 10. (Video Solution)

(a) Consider the binomial probability mass function pX(k) =
(
n
k

)
pk(1− p)n−k. Show that

the mean is E[X] = np.

(b) Consider the geometric probability mass function pX(k) = p(1 − p)k for k = 0, 1, . . ..
Show that the mean is E[X] = (1− p)/p.

(c) Consider the Poisson probability mass function pX(k) = λk

k! e
−λ. Show that the vari-

ance is Var[X] = λ.

(d) Consider the uniform probability mass function pX(k) = 1
L for k = 1, . . . , L. Show that

the variance is Var[X] = L2−1
12 . Hint: 1+ 2+ · · ·+n = n(n+1)

2 and 12 +22 + · · ·+n2 =
n3

3 + n2

2 + n
6 .
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Exercise 11. (Video Solution)
An audio player uses a low-quality hard drive. The probability that the hard drive fails after
being used for one month is 1/12. If it fails, the manufacturer offers a free-of-charge repair
for the customer. For the cost of each repair, however, the manufacturer has to pay $20.
The initial cost of building the player is $50, and the manufacturer offers a 1-year warranty.
Within one year, the customer can ask for a free repair up to 12 times.

(a) Let X be the number of months when the player fails. What is the PMF of X? Hint:
P[X = 1] may not be very high because if the hard drive fails it will be fixed by the
manufacturer. Once fixed, the drive can fail again in the remaining months. So saying
X = 1 is equivalent to saying that there is only one failure in the entire 12-month
period.

(b) What is the average cost per player?

Exercise 12. (Video Solution)
A binary communication channel has a probability of bit error of p = 10−6. Suppose that
transmission occurs in blocks of 10,000 bits. Let N be the number of errors introduced by
the channel in a transmission block.

(a) What is the PMF of N?

(b) Find P[N = 0] and P[N ≤ 3].

(c) For what value of p will the probability of 1 or more errors in a block be 99%?

Hint: Use the Poisson approximation to binomial random variables.

Exercise 13. (Video Solution)
The number of orders waiting to be processed is given by a Poisson random variable with
parameter α = λ/nµ, where λ is the average number of orders that arrive in a day, µ is the
number of orders that an employee can process per day, and n is the number of employees.
Let λ = 5 and µ = 1. Find the number of employees required so the probability that more
than four orders are waiting is less than 10%.

Hint: You need to use trial and error for a few n’s.

Exercise 14.
Let X be the number of photons counted by a receiver in an optical communication system.
It is known that X is a Poisson random variable with a rate λ1 when a signal is present and a
Poisson random variable with the rate λ0 < λ1 when a signal is absent. The probability that
the signal is present is p. Suppose that we observe X = k photons. We want to determine a
threshold T such that if k ≥ T we claim that the signal is present, and if k < T we claim
that the signal is absent. What is the value of T?
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Chapter 4

Continuous Random Variables

If you are coming to this chapter from Chapter 3, we invite you to take a 30-second pause
and switch your mind from discrete events to continuous events. Everything is continuous
now. The sample space is continuous, the event space is continuous, and the probability
measure is continuous. Continuous random variables are similar in many ways to discrete
random variables. They are characterized by the probability density functions (the continu-
ous version of the probability mass functions); they have cumulative distribution functions;
they have means, moments, and variances. The most significant difference is perhaps the use
of integration instead of summation, but this change is conceptually straightforward, aside
from the difficulties associated with integrating functions. So why do we need a separate
chapter for continuous random variables? There are several reasons.

� First, how would you define the probability of a continuous event? Note that we cannot
count because a continuous event is uncountable. There is also nothing called the
probability mass because there are infinitely many masses. To define the probability
of continuous events, we need to go back to our “slogan”: probability is a measure
of the size of a set. Because probability is a measure, we can speak meaningfully
about the probability of continuous events so long as we have a well-defined measure
for them. Defining such a measure requires some effort. We will develop the intuitions
and the formal definitions in Section 4.1. In Section 4.2, we will discuss the expectation
and variance of continuous random variables.

� The second challenge is the unification between continuous and discrete random vari-
ables. Since the two types of random variables ultimately measure the size of a set, it
is natural to ask whether we can unify them. Our approach to unifying them is based
on the cumulative distribution functions (CDFs), which are well-defined functions for
discrete and continuous random variables. Based on the CDF and the fundamental
theorem of calculus, we can show that the probability density functions and proba-
bility mass functions can be derived from the derivative of the CDFs. These will be
discussed in Section 4.3, and in Section 4.4 we will discuss some additional results
about the mode and median.

� The third challenge is to understand several widely used continuous random variables.
We will discuss the uniform random variable and the exponential random variable
in Section 4.5. Section 4.6 deals with the important topic of the Gaussian random
variable. Where does a Gaussian random variable come from? Why does it have a bell
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shape? Why are Gaussian random variables so popular in data science? What are the
useful properties of Gaussian random variables? What are the relationships between
a Gaussian random variable and other random variables? These important questions
will be answered in Section 4.6.

� The final challenge is the transformation of random variables. Imagine that you have a
random variable X and a function g. What will the probability mass/density function
of g(X) be? Addressing this problem is essential because almost all practical engineer-
ing problems involve the transformation of random variables. For example, suppose
we have voltage measurements and we would like to compute the power. This requires
taking the square of the voltage. We will discuss the transformation in Section 4.7,
and we will also discuss an essential application in generating random numbers in
Section 4.8.

4.1 Probability Density Function

4.1.1 Some intuitions about probability density functions

Let’s begin by outlining some intuitive reasoning, which is needed to define the probability
of continuous events properly. These intuitions are based on the fact that probability is a
measure. In the following discussion you will see a sequence of logical arguments for con-
structing such a measure for continuous events. Some arguments are discussed in Chapter 2,
but now we place them in the context of continuous random variables.

Suppose we are given an event A that is a subset in the sample space Ω, as illustrated
in Figure 4.1. In order to calculate the probability of A, the measure perspective suggests
that we consider the relative size of the set

P[{x ∈ A}] = “size” of A

“size” of Ω
.

The right-hand side of this equation captures everything about the probability: It is a
measure of the size of a set. It is relative to the sample space. It is a number between 0 and
1. It can be applied to discrete sets, and it can be applied to continuous sets.

Figure 4.1: [Left] An event A in the sample space Ω. The probability that A happens can be calculated
as the “size” of A relative to the “size” of Ω. [Right] A specific example on the real line. Note that the
same definition of probability applies: The probability is the size of the interval A relative to that of the
sample space Ω.
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How do we measure the “size” of a continuous set? One possible way is by means of
integrating the length, area, or volume covered by the set. Consider an example: Suppose
that the sample space is the interval Ω = [0, 5] and the event is A = [2, 3]. To measure the
“size” of A, we can integrate A to determine the length. That is,

P[{x ∈ [2, 3]}] = “size” of A

“size” of Ω
=

∫
A

dx∫
Ω

dx
=

∫ 3

2
dx∫ 5

0
dx

=
1

5
.

Therefore, we have translated the “size” of a set to an integration. However, this definition
is a very special case because when we calculate the “size” of a set, we treat all the elements
in the set with equal importance. This is a strong assumption that will be relaxed later. But
if you agree with this line of reasoning, we can rewrite the probability as

P[{x ∈ A}] =
∫
A

dx∫
Ω

dx
=

∫
A

dx

|Ω|

=

∫
A

1

|Ω|︸ ︷︷ ︸
equally important over Ω

dx.

This equation says that under our assumption (that all elements are equiprobable), the
probability of A is calculated as the integration of A using an integrand 1/|Ω| (note that
1/|Ω| is a constant with respect to x). If we evaluate the probability of another event B, all
we need to do is to replace A with B and compute

∫
B

1
|Ω| dx.

What happens if we want to relax the “equiprobable” assumption? Perhaps we can
adopt something similar to the probability mass function (PMF). Recall that a PMF pX
evaluated at a point x is the probability that the state x happens, i.e., pX(x) = P[X = x].
So, pX(x) is the relative frequency of x. Following the same line of thinking, we can define a
function fX such that fX(x) tells us something related to the “relative frequency”. To this
end, we can treat fX as a continuous histogram with infinitesimal bin width as shown in
Figure 4.2. Using this fX , we can replace the constant function 1/|Ω| with the new function
fX(x). This will give us

P[{x ∈ A}] =
∫
A

fX(x)︸ ︷︷ ︸
replace 1/|Ω|

dx. (4.1)

If we compare it with a PMF, we note that when X is discrete,

P[{x ∈ A}] =
∑
x∈A

pX(x).

Hence, fX can be considered a continuous version of pX , although we do not recommend
this way of thinking for the following reason: pX(x) is a legitimate probability, but fX(x) is
not a probability. Rather, fX is the probability per unit length, meaning that we need to
integrate fX (times dx) in order to generate a probability value. If we only look at fX at
a point x, then this point is a measure-zero set because the length of this set is zero.

Equation (4.1) should be familiar to you from Chapter 2. The function fX(x) is pre-
cisely the weighting function we described in that chapter.
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Figure 4.2: [Left] A probability mass function (PMF) tells us the relative frequency of a state when
computing the probability. In this example, the “size” of A is pX(x2) + pX(x3). [Right] A probability
density function (PDF) is the infinitesimal version of the PMF. Thus, the “size” of A is the integration
over the PDF.

What is a PDF?

� A PDF is the continuous version of a PMF.

� We integrate a PDF to compute the probability.

� We integrate instead of sum because continuous events are not countable.

To summarize, we have learned that when measuring the size of a continuous event,
the discrete technique (counting the number of elements) does not work. Generalizing to
continuous space requires us to integrate the event. However, since different elements in an
event have different relative emphases, we use the probability density function fX(x) to tell
us the relative frequency for a state x to happen. This PDF serves the role of the PMF.

4.1.2 More in-depth discussion about PDFs

A continuous random variable X is defined by its probability density function fX . This
function has to satisfy several criteria, summarized as follows.

Definition 4.1. A probability density function fX of a random variable X is a map-
ping fX : Ω→ R, with the properties

� Non-negativity: fX(x) ≥ 0 for all x ∈ Ω

� Unity:
∫
Ω
fX(x) dx = 1

� Measure of a set: P[{x ∈ A}] =
∫
A
fX(x) dx

If all elements of the sample space are equiprobable, then the PDF is f(x) = 1/|Ω|. You can
easily check that it satisfies all three criteria.

Let us take a closer look at the three criteria:

� Non-negativity: The non-negativity criterion fX(x) ≥ 0 is reminiscent of Probability
Axiom I. It says that no matter what x we are looking at, the probability density
function fX evaluated at x should never give a negative value. Axiom I ensures that
we will not get a negative probability.
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� Unity: The unity criterion
∫
Ω
f(x) dx = 1 is reminiscent of Probability Axiom II,

which says that measuring over the entire sample space will give 1.

� Measure of a set: The third criterion gives us a way to measure the size of an event A.
It says that since each x ∈ Ω has a different emphasis when calculating the size of
A, we need to scale the elements properly. This scaling is done by the PDF fX(x),
which can be regarded as a histogram with a continuous x-axis. The third criterion
is a consequence of Probability Axiom III, because if there are two events A and B
that are disjoint, then P[{x ∈ A} ∪ {x ∈ B}] =

∫
A
fX(x) dx +

∫
B
fX(x) dx because

fX(x) ≥ 0 for all x.

If the random variable X takes real numbers in 1D, then a more “user-friendly” definition
of the PDF can be given.

Definition 4.2. Let X be a continuous random variable. The probability density
function (PDF) of X is a function fX : Ω→ R that, when integrated over an interval
[a, b], yields the probability of obtaining a ≤ X ≤ b:

P[a ≤ X ≤ b] =

∫ b

a

fX(x) dx. (4.2)

This definition is just a rewriting of the previous definition by explicitly writing out
the definition of A as an interval [a, b]. Here are a few examples.

Example 4.1. Let fX(x) = 3x2 with Ω = [0, 1]. Let A = [0, 0.5]. Then the probability
P[{X ∈ A}] is

P[0 ≤ X ≤ 0.5] =

∫ 0.5

0

3x2 dx =
1

8
.

Example 4.2. Let fX(x) = 1/|Ω| with Ω = [0, 5]. Let A = [3, 5]. Then the probability
P[{X ∈ A}] is

P[3 ≤ X ≤ 5] =

∫ 5

3

1

|Ω|
dx =

∫ 5

3

1

5
dx =

2

5
.

Example 4.3. Let fX(x) = 2x with Ω = [0, 1]. Let A = {0.5}. Then the probability
P[{X ∈ A}] is

P[X = 0.5] = P[0.5 ≤ X ≤ 0.5] =

∫ 0.5

0.5

2x dx = 0.

This example shows that evaluating the probability at an isolated point for a contin-
uous random variable will yield 0.
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Practice Exercise 4.1. Let X be the phase angle of a voltage signal. Without any
prior knowledge about X we may assume that X has an equal probability of any value
between 0 to 2π. Find the PDF of X and compute P[0 ≤ X ≤ π/2].

Solution. Since X has an equal probability for any value between 0 to 2π, the PDF
of X is

fX(x) =
1

2π
, for 0 ≤ x ≤ 2π.

Therefore, the probability P[0 ≤ X ≤ π/2] can be computed as

P
[
0 ≤ X ≤ π

2

]
=

∫ π/2

0

1

2π
dx =

1

4
.

Looking at Equation (4.2), you may wonder: If the PDF fX is analogous to PMF
pX , why didn’t we require 0 ≤ fX(x) ≤ 1 instead of requiring only fX(x) ≥ 0? This is
an excellent question, and it points exactly to the difference between a PMF and a PDF.
Notice that fX is a mapping from the sample space Ω to the real line R. It does not map
Ω to [0, 1]. On the other hand, since pX(x) is the actual probability, it maps Ω to [0, 1].
Thus, fX(x) can take very large values but will not explode, because we have the unity
constraint

∫
Ω
fX(x) dx = 1. Even if fX(x) takes a large value, it will be compensated by the

small dx. If you recall, there is nothing like dx in the definition of a PMF. Whenever there
is a probability mass, we need to sum or, putting it another way, the dx in the discrete case
is always 1. Therefore, while the probability mass PMF must not exceed 1, a probability
density PDF can exceed 1.

If fX(x) ≥ 1, then what is the meaning of fX(x)? Isn’t it representing the probability
of having an element X = x? If it were a discrete random variable, then yes; pX(x) is the
probability of having X = x (so the probability mass cannot go beyond 1). However, for a
continuous random variable, fX(x) is not the probability of having X = x. The probability
of having X = x (i.e., exactly at x) is 0 because an isolated point has zero measure in the
continuous space. Thus, even though fX(x) takes a value larger than 1, the probability of
X being x is zero.

At this point you can see why we call PDF a density, or density function, because each
value fX(x) is the probability per unit length. If we want to calculate the probability of
x ≤ X ≤ x+ δ, for example, then according to our definition, we have

P[x ≤ X ≤ x+ δ] =

∫ x+δ

x

fX(x) dx ≈ fX(x) · δ.

Therefore, the probability of P[x ≤ X ≤ x + δ] can be regarded as the “per unit length”
density fX(x) multiplied with the “length” δ. As δ → 0, we can see that P[X = x] = 0. See
Figure 4.3 for an illustration.

Why are PDFs called a density function?

� Because fX(x) is the probability per unit length.

� You need to integrate fX(x) to obtain a probability.
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Figure 4.3: The probability P[x ≤ X ≤ x+ δ] can be approximated by the density fX(x) multiplied by
the length δ.

Example 4.4. Consider a random variable X with PDF fX(x) = 1
2
√
x

for any

0 < x ≤ 1, and is 0 otherwise. We can show that fX(x) → ∞ as x → 0. However,
fX(x) remains a valid PDF because∫ ∞

−∞
fX(x) dx =

∫ 1

0

1

2
√
x
dx =

√
x

∣∣∣∣1
0

= 1.

Remark. Since isolated points have zero measure in the continuous space, the probability
of an open interval (a, b) is the same as the probability of a closed interval:

P[[a, b]] = P[(a, b)] = P[(a, b]] = P[[a, b)].

The exception is that when the PDF of fX(x) has a delta function at a or b. In this case,
the probability measure at a or b will be non-zero. We will discuss this when we talk about
the CDFs.

Practice Exercise 4.2. Let fX(x) = c(1−x2) for −1 ≤ x ≤ 1, and 0 otherwise. Find
the constant c.

Solution. Since
∫
Ω
fX(x) dx = 1, it follows that∫

Ω

fX(x) dx =

∫ 1

−1
c(1− x2) dx =

4c

3
⇒ c = 3/4.

Practice Exercise 4.3. Let fX(x) = x2 for |x| ≤ a, and 0 otherwise. Find a.

Solution. Note that ∫
Ω

fX(x) dx =

∫ a

−a
x2 dx =

x3

3

∣∣∣∣a
−a

=
2a3

3
.

Setting 2a3

3 = 1 yields a = 3

√
3
2 .
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4.1.3 Connecting with the PMF

The probability density function is more general than the probability mass function. To see
this, consider a discrete random variable X with a PMF pX(x). Because pX is defined on
a countable set Ω, we can write it as a train of delta functions and define a corresponding
PDF:

fX(x) =
∑
xk∈Ω

pX(xk) δ(x− xk).

Example 4.5. If X is a Bernoulli random variable with PMF pX(1) = p and pX(0) =
1− p, then the corresponding PDF can be written as

fX(x) = p δ(x− 1) + (1− p) δ(x− 0).

Example 4.6. If X is a binomial random variable with PMF pX(k) =
(
n
k

)
pk(1−p)n−k,

then the corresponding PDF can be written as

fX(x) =

n∑
k=0

pX(k) δ(x− k)

=

n∑
k=0

(
n

k

)
pk(1− p)n−k δ(x− k).

Strictly speaking, delta functions are not really functions. They are defined through
integrations. They satisfy the properties that δ(x − xk) = ∞ if x = xk, δ(x − xk) = 0 if
x ̸= xk, and ∫ xk+ϵ

xk−ϵ
δ(x− xk) dx = 1,

for any ϵ > 0. Suppose we ignore the fact that delta functions are not functions and merely
treat them as ordinary functions with some interesting properties. In this case, we can
imagine that for every probability mass pX(xk), there exists an interval [a, b] such that
there is one and only one state xk that lies in [a, b], as shown in Figure 4.4.

Figure 4.4: We can view a PMF as a train of impulses. When computing the probability X = xk, we
integrate the PMF over the interval [a, b].
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If we want to calculate the probability of obtaining X = xk, we can show that

P[X = xk]
(a)
= P[a ≤ X ≤ b]

=

∫ b

a

fX(x) dx

(b)
=

∫ b

a

pX(xk) δ(x− xk) dx

(c)
= pX(xk)

∫ b

a

δ(x− xk) dx︸ ︷︷ ︸
=1

= pX(xk).

Here, step (a) holds because within [a, b], there is no other event besides X = xk. Step (b)
is just the definition of our fX(x) (inside the interval [a, b]). Step (c) shows that the delta
function integrates to 1, thus leaving the probability mass pX(xk) as the final result. Let us
look at an example and then comment on this intuition.

Example 4.7. Let X be a discrete random variable with PMF

pX(k) =
1

2k
, k = 1, 2, . . .

The continuous representation of the PMF can be written as

fX(x) =

∞∑
k=1

pX(k) δ(x− k) =

∞∑
k=1

(
1

2k

)
δ(x− k).

Suppose we want to compute the probability P[1 ≤ X ≤ 2]. This can be computed as

P[1 ≤ X ≤ 2] =

∫ 2

1

fX(x) dx =

∫ 2

1

∞∑
k=1

(
1

2k

)
δ(x− k) dx

=

∫ 2

1

{
1

2
δ(x− 1) +

1

4
δ(x− 2) + · · ·

}
dx

=
1

2

∫ 2

1

δ(x− 1) dx︸ ︷︷ ︸
=1

+
1

4

∫ 2

1

δ(x− 2) dx︸ ︷︷ ︸
=1

+
1

8

∫ 2

1

δ(x− 3) dx︸ ︷︷ ︸
=0

+ · · ·︸︷︷︸
=0

=
1

2
+

1

4
=

3

4
.

However, if we want to compute the probability P[1 < X ≤ 2], then the integration
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limit will not include the number 1 and so the delta function will remain 0. Thus,

P[1 < X ≤ 2] =

∫ 2

1+
fX(x) dx

=
1

2

∫ 2

1+
δ(x− 1) dx︸ ︷︷ ︸

=0

+
1

4

∫ 2

1+
δ(x− 2) dx︸ ︷︷ ︸

=1

=
1

4
.

Closing remark. To summarize, we see that a PMF can be “regarded” as a PDF. We are
careful to put a quotation around “regarded” because PMF and PDF are defined for different
events. A PMF uses a discrete measure (i.e., a counter) for countable events, whereas a PDF
uses a continuous measure (i.e., integration) for continuous events. The way we link the two is
by using the delta functions. Using the delta functions is valid, but the argument we provide
here is intuitive rather than rigorous. It is not rigorous because the integration we use is still
the Riemann-Stieltjes integration, which does not handle delta functions. Therefore, while
you can treat a discrete PDF as a train of delta functions, it is important to remember the
limitations of the integrations we use.

4.2 Expectation, Moment, and Variance

4.2.1 Definition and properties

As with discrete random variables, we can define expectation for continuous random vari-
ables. The definition is analogous: Just replace the summation with integration.

Definition 4.3. The expectation of a continuous random variable X is

E[X] =

∫
Ω

x fX(x) dx. (4.3)

Example 4.8. (Uniform random variable) Let X be a continuous random variable
with PDF fX(x) = 1

b−a for a ≤ x ≤ b, and 0 otherwise. The expectation is

E[X] =

∫
Ω

xfX(x) dx =

∫ b

a

x · 1

b− a
dx =

1

b− a

∫ b

a

x dx︸ ︷︷ ︸
= x2

2

∣∣b
a

=
1

b− a
· b

2 − a2

2
=

a+ b

2
.
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Example 4.9. (Exponential random variable) Let X be a continuous random variable
with PDF fX(x) = λe−λx, for x ≥ 0. The expectation is

E[X] =

∫ ∞
0

x λe−λx dx

= −
∫ ∞
0

x de−λx

= −xe−λx
∣∣∣∣∞
0︸ ︷︷ ︸

=0

+

∫ ∞
0

e−λx dx

= − 1

λ
e−λx

∣∣∣∣∞
0︸ ︷︷ ︸

=−1

=
1

λ
,

where the colored step is due to integration by parts.

If a function g is applied to the random variable X, the expectation can be found using
the following theorem.

Theorem 4.1. Let g : Ω→ R be a function and X be a continuous random variable.
Then

E[g(X)] =

∫
Ω

g(x) fX(x) dx. (4.4)

Example 4.10. (Uniform random variable) Let X be a continuous random variable
with fX(x) = 1

b−a for a ≤ x ≤ b, and 0 otherwise. If g(·) = (·)2, then

E[g(X)] = E[X2] =

∫
Ω

x2fX(x) dx

=
1

b− a
·
∫ b

a

x2 dx︸ ︷︷ ︸
= b3−a3

3

=
a2 + ab+ b2

3
.

Practice Exercise 4.4. Let Θ be a continuous random variable with PDF fΘ(θ) =
1
2π

for 0 ≤ θ ≤ 2π and is 0 otherwise. Let Y = cos(ωt+Θ). Find E[Y ].

Solution. Referring to Equation (4.4), the function g is

g(θ) = cos(ωt+ θ).
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Therefore, the expectation E[Y ] is

E[Y ] =

∫ 2π

0

cos(ωt+ θ) fΘ(θ) dθ

=
1

2π

∫ 2π

0

cos(ωt+ θ) dθ = 0,

where the last equality holds because the integral of a sinusoid over one period is 0.

Practice Exercise 4.5. Let A ⊆ Ω. Let IA(X) be an indicator function such that

IA(X) =

{
1, if X ∈ A,

0, if X ̸∈ A.

Find E[IA(X)].

Solution. The expectation is

E[IA(X)] =

∫
Ω

IA(x)fX(x) dx =

∫
x∈A

fX(x) dx = P[X ∈ A].

So the probability of {X ∈ A} can be equivalently represented in terms of expectation.

Practice Exercise 4.6. Is it true that E[1/X] = 1/E[X]?

Solution. No. This is because

E
[
1

X

]
=

∫
Ω

1

x
fX(x) dx ̸= 1∫

Ω
xfX(x) dx

=
1

E[X]
.

All the properties of expectation we learned in the discrete case can be translated to
the continuous case. Specifically, we have that

� E[aX] = aE[X]: A scalar multiple of a random variable will scale the expectation.

� E[X+a] = E[X]+a: Constant addition of a random variable will offset the expectation.

� E[aX + b] = aE[X] + b: Affine transformation of a random variable will translate to
the expectation.

Practice Exercise 4.7. Prove the above three statements.

Solution. The third statement is just the sum of the first two statements, so we just
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need to show the first two:

E[aX] =

∫
Ω

axfX(x) dx = a

∫
Ω

xfX(x) dx = aE[X],

E[X + a] =

∫
Ω

(x+ a)fX(x) dx =

∫
Ω

xfX(x) dx+ a = E[X] + a.

4.2.2 Existence of expectation

As we discussed in the discrete case, not all random variables have an expectation.

Definition 4.4. A random variable X has an expectation if it is absolutely integrable,
i.e.,

E[|X|] =
∫
Ω

|x|fX(x) dx <∞. (4.5)

Being absolutely integrable implies that the expectation is that E[|X|] is the upper
bound of E[X].

Theorem 4.2. For any random variable X,

|E[X]| ≤ E[|X|]. (4.6)

Proof. Note that fX(x) ≥ 0. Therefore,

−|x| fX(x) ≤ x fX(x) ≤ |x|, fX(x), ∀x.

Thus, integrating all three terms yields

−
∫
Ω

|x|fX(x) dx ≤
∫
Ω

x fX(x) dx ≤
∫
Ω

|x|fX(x) dx,

which is equivalent to −E[|X|] ≤ E[X] ≤ E[|X|].
□

Example 4.11. Here is a random variable whose expectation is undefined. Let X be
a random variable with PDF

fX(x) =
1

π(1 + x2)
, x ∈ R.

This random variable is called the Cauchy random variable. We can show that

E[X] =

∫ ∞
−∞

x · 1

π(1 + x2)
dx =

1

π

∫ ∞
0

x

(1 + x2)
dx+

1

π

∫ 0

−∞

x

(1 + x2)
dx.
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The first integral gives∫ ∞
0

x

(1 + x2)
dx =

1

2
log(1 + x2)

∣∣∣∞
0

=∞,

and the second integral gives −∞. Since neither integral is finite, the expectation is
undefined. We can also check the absolutely integrability criterion:

E[|X|] =
∫ ∞
−∞
|x| · 1

π(1 + x2)
dx

(a)
= 2

∫ ∞
0

x

π(1 + x2)
dx ≥ 2

∫ ∞
1

x

π(1 + x2)
dx

(b)

≥ 2

∫ ∞
1

x

π(x2 + x2)
dx =

1

π
log(x)

∣∣∣∞
1

=∞,

where in (a) we use the fact that the function being integrated is even, and in (b) we
lower-bound 1

1+x2 ≥ 1
x2+x2 if x > 1.

4.2.3 Moment and variance

The moment and variance of a continuous random variable can be defined analogously to
the moment and variance of a discrete random variable, replacing the summations with
integrations.

Definition 4.5. The kth moment of a continuous random variable X is

E[Xk] =

∫
Ω

xk fX(x) dx. (4.7)

Definition 4.6. The variance of a continuous random variable X is

Var[X] = E[(X − µ)2] =

∫
Ω

(x− µ)2fX(x) dx, (4.8)

where µ
def
= E[X].

It is not difficult to show that the variance can also be expressed as

Var[X] = E[X2]− µ2,

because

Var[X] = E[(X − µ)2] = E[X2]− 2E[X]µ+ µ2 = E[X2]− µ2.
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Practice Exercise 4.8. (Uniform random variable) Let X be a continuous random
variable with PDF fX(x) = 1

b−a for a ≤ x ≤ b, and 0 otherwise. Find Var[X].

Solution. We have shown that E[X] = a+b
2 and E[X2] = a2+ab+b2

3 . Therefore, the
variance is

Var[X] = E[X2]− E[X]2

=
a2 + ab+ b2

3
−
(
a+ b

2

)2

=
(b− a)2

12
.

Practice Exercise 4.9. (Exponential random variable) Let X be a continuous ran-
dom variable with PDF fX(x) = λe−λx for x ≥ 0, and 0 otherwise. Find Var[X].

Solution. We have shown that E[X] = 1
λ . The second moment is

E[X2] =

∫ ∞
0

x2 λe−λx dx

=
[
−x2e−λx

]∞
0

+

∫ ∞
0

2xe−λx dx

=
2

λ

∫ ∞
0

xλe−λx dx

=
2

λ
· 1
λ
=

2

λ2
.

Therefore,

Var[X] = E[X2]− E[X]2

=
2

λ2
− 1

λ2
=

1

λ2
.

4.3 Cumulative Distribution Function

When we discussed discrete random variables, we introduced the concept of cumulative
distribution functions (CDFs). One of the motivations was that if we view a PMF as a train
of delta functions, they are technically not well-defined functions. However, it turns out that
the CDF is always a well-defined function. In this section, we will complete the story by first
discussing the CDF for continuous random variables. Then, we will come back and show
you how the CDF can be derived for discrete random variables.
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4.3.1 CDF for continuous random variables

Definition 4.7. Let X be a continuous random variable with a sample space Ω = R.
The cumulative distribution function (CDF) of X is

FX(x)
def
= P[X ≤ x] =

∫ x

−∞
fX(x′) dx′. (4.9)

The interpretation of the CDF can be seen from Figure 4.5. Given a PDF fX , the CDF
FX evaluated at x is the integration of fX from −∞ up to a point x. The integration of fX
from −∞ to x is nothing but the area under the curve of fX . Since fX is non-negative, the
larger value x we use to evaluate in FX(x), the more area under the curve we are looking
at. In the extreme when x = −∞, we can see that FX(−∞) = 0, and when x = +∞ we
have that FX(+∞) =

∫∞
−∞ fX(x) dx = 1.

Figure 4.5: A CDF is the integral of the PDF. Thus, the height of a stem in the CDF corresponds to
the area under the curve of the PDF.

Practice Exercise 4.10. (Uniform random variable) Let X be a continuous random
variable with PDF fX(x) = 1

b−a for a ≤ x ≤ b, and is 0 otherwise. Find the CDF of X.

Solution. The CDF of X is given by

FX(x) =


0, x ≤ a,∫ x

−∞ fX(x′) dx′ =
∫ x

a
1

b−a dx′ = x−a
b−a , a < x ≤ b,

1, x > b.

As you can see from this practice exercise, we explicitly break the CDF into three segments.
The first segment gives FX(x) = 0 because for any x ≤ a, there is nothing to integrate,
since fX(x) = 0 for any x ≤ a. Similarly, for the last segment, FX(x) = 1 for all x > b
because once x goes beyond b, the integration will cover all the non-zeros of fX . Figure 4.6
illustrates the PDF and CDF for this example.

In MATLAB, we can generate the PDF and CDF using the commands pdf and cdf

respectively. For the particular example shown in Figure 4.6, the following code can be used.
A similar set of commands can be implemented in Python.
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Figure 4.6: Example: fX(x) = 1/(b− a) for a ≤ x ≤ b. The CDF has three segments.

% MATLAB code to generate the PDF and CDF

unif = makedist(’Uniform’,’lower’,-3,’upper’,4);

x = linspace(-5, 10, 1500)’;

f = pdf(unif, x);

F = cdf(unif, x);

figure(1); plot(x, f, ’LineWidth’, 6);

figure(2); plot(x, F, ’LineWidth’, 6);

# Python code to generate the PDF and CDF

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

x = np.linspace(-5,10,1500)

f = stats.uniform.pdf(x,-3,4)

F = stats.uniform.cdf(x,-3,4)

plt.plot(x,f); plt.show()

plt.plot(x,F); plt.show()

Practice Exercise 4.11. (Exponential random variable) Let X be a continuous
random variable with PDF fX(x) = λe−λx for x ≥ 0, and 0 otherwise. Find the CDF
of X.

Solution. Clearly, for x < 0, we have FX(x) = 0. For x ≥ 0, we can show that

FX(x) =

∫ x

0

fX(x′) dx′ =

∫ x

0

λe−λx
′
dx′ = 1− e−λx.

Therefore, the complete CDF is (see Figure 4.7 for illustration):

FX(x) =

{
0, x < 0,

1− e−λx, x ≥ 0.

The MATLAB code and Python code to generate this figure are shown below.
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Figure 4.7: Example: fX(x) = λe−λx for x ≥ 0. The CDF has two segments.

% MATLAB code to generate the PDF and CDF

pd = makedist(’exp’,2);

x = linspace(-5, 10, 1500)’;

f = pdf(pd, x);

F = cdf(pd, x);

figure(1); plot(x, f, ’LineWidth’, 6);

figure(2); plot(x, F, ’LineWidth’, 6);

# Python code to generate the PDF and CDF

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

x = np.linspace(-5,10,1500)

f = stats.expon.pdf(x,2)

F = stats.expon.cdf(x,2)

plt.plot(x,f); plt.show()

plt.plot(x,F); plt.show()

4.3.2 Properties of CDF

Let us now describe the properties of a CDF. If we compare these with those for the discrete
cases, we see that the continuous cases simply replace the summations by integrations.
Therefore, we should expect to inherit most of the properties from the discrete cases.

Proposition 4.1. Let X be a random variable (either continuous or discrete), then
the CDF of X has the following properties:

(i) The CDF is nondecreasing.

(ii) The maximum of the CDF is when x =∞: FX(+∞) = 1.

(iii) The minimum of the CDF is when x = −∞: FX(−∞) = 0.
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Proof. For (i), we notice that FX(x) =
∫ x

−∞ fX(x′) dx′. Therefore, if s ≤ t then

FX(s) =

∫ s

−∞
fX(x′) dx′ ≤

∫ t

−∞
fX(x′) dx′ = FX(t).

Thus it shows that FX is nondecreasing. (It does not need to be increasing because a CDF
can have a steady state.) For (ii) and (iii), we can show that

FX(+∞) =

∫ +∞

−∞
fX(x′) dx′ = 1, and FX(−∞) =

∫ −∞
−∞

fX(x′) dx′ = 0. □

Example 4.12. We can show that the CDF we derived for the uniform random variable
satisfies these three properties. To see this, we note that

FX(x) =
x− a

b− a
, a ≤ x ≤ b.

The derivative of this function F ′X(x) = 1
b−a > 0 for a ≤ x ≤ b. Also, note that

FX(x) = 0 for x < a and x > b, so FX is nondecreasing. The other two properties
follow because if x = b, then FX(b) = 1, and if x = a then FX(a) = 0. Together with
the nondecreasing property, we show (ii) and (iii).

Proposition 4.2. Let X be a continuous random variable. If the CDF FX is contin-
uous at any a ≤ x ≤ b, then

P[a ≤ X ≤ b] = FX(b)− FX(a). (4.10)

Proof. The proof follows from the definition of the CDF, which states that

FX(b)− FX(a) =

∫ b

−∞
fX(x′) dx′ −

∫ a

−∞
fX(x′) dx′

=

∫ b

a

fX(x′) dx′ = P[a ≤ X ≤ b]. □

This result provides a very handy tool for calculating the probability of an event
a ≤ X ≤ b using the CDF. It says that P[a ≤ X ≤ b] is the difference between FX(b) and
FX(a). So, if we are given FX , calculating the probability of a ≤ X ≤ b just involves
evaluating the CDF at a and b. The result also shows that for a continuous random vari-
able X, P[X = x0] = FX(x0)−FX(x0) = 0. This is consistent with our arguments from the
measure’s point of view.

Example 4.13. (Exponential random variable) We showed that the exponential ran-
dom variable X with a PDF fX(x) = λe−λx for x ≥ 0 (and fX(x) = 0 for x < 0)
has a CDF given by FX(x) = 1 − e−λx for x ≥ 0. Suppose we want to calculate the
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probability P[1 ≤ X ≤ 3]. Then the PDF approach gives us

P[1 ≤ X ≤ 3] =

∫ 3

1

fX(x) dx =

∫ 3

1

λe−λx dx = −e−λx
∣∣∣∣3
1

= e−3λ − e−λ.

If we take the CDF approach, we can show that

P[1 ≤ X ≤ 3] = FX(3)− FX(1)

= (1− e−λ)− (1− e−3λ) = e−3λ − e−λ,

which yields the same as the PDF approach.

Example 4.14. Let X be a random variable with PDF fX(x) = 2x for 0 ≤ x ≤ 1,
and is 0 otherwise. We can show that the CDF is

FX(x) =

∫ x

0

fX(t) dt =

∫ x

0

2t dt = t2
∣∣∣∣x
0

= x2, 0 ≤ x ≤ 1.

Therefore, to compute the probability P[1/3 ≤ X ≤ 1/2], we have

P
[
1

3
≤ X ≤ 1

2

]
= FX

(
1

2

)
− FX

(
1

3

)
=

(
1

2

)2

−
(
1

3

)2

=
5

36
.

□

A CDF can be used for both continuous and discrete random variables. However, before
we can do that, we need a tool to handle the discontinuities. The following definition is a
summary of the three types of continuity.

Definition 4.8. A function FX(x) is said to be

� Left-continuous at x = b if FX(b) = FX(b−)
def
= limh→0 FX(b− h);

� Right-continuous at x = b if FX(b) = FX(b+)
def
= limh→0 FX(b+ h);

� Continuous at x = b if it is both right-continuous and left-continuous at x = b.
In this case, we have

lim
h→0

FX(b− h) = lim
h→0

FX(b+ h) = F (b).

In this definition, the step size h > 0 is shrinking to zero. The point b−h stays at the left of
b, and b+h stays at the right of b. Thus, if we set the limit h→ 0, b−h will approach a point
b− whereas b+ h will approach a point b+. If it happens that FX(b−) = FX(b) then we say
that FX is left-continuous at b. If FX(b+) = FX(b) then we say that FX is right-continuous
at b. These are summarized in Figure 4.8.

Whenever FX has a discontinuous point, it can be left-continuous, right-continuous, or
neither. (“Neither” happens if FX(b) take a value other than FX(b+) or FX(b−). You can
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Figure 4.8: The definition of left- and right-continuous at a point b.

always create a nasty function that satisfies this condition.) For continuous functions, it is
necessary that FX(b−) = FX(b+). If this happens, there is no gap between the two points.

Theorem 4.3. For any random variable X (discrete or continuous), FX(x) is always
right-continuous. That is,

FX(b) = FX(b+)
def
= lim

h→0
FX(b+ h) (4.11)

Right-continuous means that if FX(x) is piecewise, it must have a solid left end and an
empty right end. Figure 4.9 shows an example of a valid CDF and an invalid CDF.

Figure 4.9: A CDF must be right-continuous.

The reason why FX is always right-continuous is that the inequality X ≤ x has a
closed right-hand limit. Imagine the following situation: A discrete random variable X has
four states: 1, 2, 3, 4. Then,

lim
h→0

FX(3 + h) = lim
h→0

“3 + h”∑
k=1

pX(k) = pX(1) + pX(2) + pX(3) = FX(3).

Similarly, if you have a continuous random variable X with a PDF fX , then

lim
h→0

FX(b+ h) = lim
h→0

∫ b+h

−∞
fX(t) dt =

∫ b

−∞
fX(t) dt = FX(b).
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In other words, the “≤” ensures that the rightmost state is included. If we defined CDF
using <, we would have gotten left-hand continuous, but this would be inconvenient because
the < requires us to deal with limits whenever we evaluate X < x.

Theorem 4.4. For any random variable X (discrete or continuous), P[X = b] is

P[X = b] =

{
FX(b)− FX(b−), if FX is discontinuous at x = b

0, otherwise.
(4.12)

This proposition states that when FX(x) is discontinuous at x = b, then P[X = b] is
the difference between FX(b) and the limit from the left. In other words, the height of the
gap determines the probability at the discontinuity. If FX(x) is continuous at x = b, then
FX(b) = limh→0 FX(b− h) and so P[X = b] = 0.

Figure 4.10: Illustration of Equation (4.12). Since the CDF is discontinuous at a point x = b, the gap
FX(b)− FX(b−) will define the probability P[X = b].

Example 4.15. Consider a random variable X with a PDF

fX(x) =


x, 0 ≤ x ≤ 1,
1
2 , x = 3,

0, otherwise.

The CDF FX(x) will consist of a few segments. The first segment is 0 ≤ x < 1. We
can show that

FX(x) =

∫ x

0

fX(t) dt =

∫ x

0

t dt =
t2

2

∣∣∣∣x
0

=
x2

2
, 0 ≤ x < 1.

The second segment is when 1 ≤ x < 3. Since there is no new fX to integrate, the
CDF stays at FX(x) = FX(1) = 1

2 for 1 ≤ x < 3. The third segment is x > 3. Because
this range has covered the entire sample space, we have FX(x) = 1 for x > 3. How
about x = 3? We can show that

FX(3) = FX(3+) = 1.
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Therefore, to summarize, the CDF is

FX(x) =


0, x < 0,
x2

2 , 0 ≤ x < 1,
1
2 , 1 ≤ x < 3,

1, x ≥ 3.

A graphical illustration is shown in Figure 4.11.

Figure 4.11: An example of converting a PDF to a CDF.

4.3.3 Retrieving PDF from CDF

Thus far, we have only seen how to obtain FX(x) from fX(x). In order to go in the reverse
direction, we recall the fundamental theorem of calculus. This states that if a function f is
continuous, then

f(x) =
d

dx

∫ x

a

f(t) dt

for some constant a. Using this result for CDF and PDF, we have the following:

Theorem 4.5. The probability density function (PDF) is the derivative of the cu-
mulative distribution function (CDF):

fX(x) =
dFX(x)

dx
=

d

dx

∫ x

−∞
fX(x′) dx′, (4.13)

provided FX is differentiable at x. If FX is not differentiable at x = x0, then,

fX(x0) = P[X = x0]δ(x− x0).

Example 4.16. Consider a CDF

FX(x) =

{
0, x < 0,

1− 1
4e
−2x, x ≥ 0.

We want to find the PDF fX(x). To do so, we first show that FX(0) = 3
4 . This
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corresponds to a discontinuity at x = 0, as shown in Figure 4.12.

Figure 4.12: An example of converting a PDF to a CDF.

Because of the discontinuity, we need to consider three cases:

fX(x) =


dFX(x)

dx , x < 0,

P[X = 0] δ(x− 0), x = 0,
dFX(x)

dx , x > 0.

When x < 0, FX(x) = 0, so dFX(x)
dx = 0. When x > 0, FX(x) = 1− 1

4e
−2x, so

dFX(x)

dx
=

1

2
e−2x.

When x = 0, the probability P[X = 0] is determined by the gap between the solid dot
and the empty dot. This yields

P[X = 0] = FX(0)− lim
h→0

FX(0− h) =
3

4
− 0 =

3

4
.

Therefore, the overall PDF is

fX(x) =


0, x < 0,
3
4δ(x− 0), x = 0,
1
2e
−2x, x > 0.

Figure 4.12 illustrates this example.

4.3.4 CDF: Unifying discrete and continuous random variables

The CDF is always a well-defined function. It is integrable everywhere. If the underlying
random variable is continuous, the CDF is also continuous. If the underlying random variable
is discrete, the CDF is a staircase function. We have seen enough CDFs for continuous
random variables. Let us (re)visit a few discrete random variables.

Example 4.17. (Geometric random variable) Consider a geometric random variable
with PMF pX(k) = (1− p)k−1p, for k = 1, 2, . . ..
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Figure 4.13: PMF and CDF of a geometric random variable.

We can show that the CDF is

FX(k) =

k∑
ℓ=1

pX(ℓ) =

k∑
ℓ=1

(1− p)ℓ−1p = p · 1− (1− p)k

1− (1− p)
= 1− (1− p)k.

For a sanity check, we can try to retrieve the PMF from the CDF:

pX(k) = FX(k)− FX(k − 1)

= (1− (1− p)k)− (1− (1− p)k−1)

= (1− p)k−1p.

A graphical portrayal of this example is shown in Figure 4.13.

If we treat the PMFs as delta functions in the above example, then the continuous
definition also applies. Since the CDF is a piecewise constant function, the derivative is
exactly a delta function. For some problems, it is easier to start with CDF and then compute
the PMF or PDF. Here is an example.

Example 4.18. Let X1, X2 and X3 be three independent discrete random variables
with sample space Ω = {1, 2, . . . , 10}. Define X = max{X1, X2, X3}. We want to
find the PMF of X. To tackle this problem, we first observe that the PMF for X1 is
pX1

(k) = 1
10 . Thus, the CDF of X1 is

FX1
(k) =

k∑
ℓ=1

pX1
(ℓ) =

k

10
.

Then, we can show that the CDF of X is

FX(k) = P[X ≤ k] = P[max{X1, X2, X3} ≤ k]

(a)
= P[X1 ≤ k ∩X2 ≤ k ∩X3 ≤ k]

(b)
= P[X1 ≤ k]P[X2 ≤ k]P[X3 ≤ k]

=

(
k

10

)3

,
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where in (a) we use the fact that max{X1, X2, X3} ≤ k if and only if all three elements
are less than k, and in (b) we use independence. Consequently, the PMF of X is

pX(k) = FX(k)− FX(k − 1) =

(
k

10

)3

−
(
k − 1

10

)3

.

What is a CDF?

� CDF is FX(x) = P[X ≤ x]. It is the cumulative sum of the PMF/PDF.

� CDF is either a staircase function, a smooth function, or a hybrid. Unlike a
PDF, which is not defined for discrete random variables, the CDF is always well
defined.

� CDF
d
dx−→ PDF.

� CDF

∫
←− PDF.

� Gap of jump in CDF = height of delta in PDF.

4.4 Median, Mode, and Mean

There are three statistical quantities that we are frequently interested in: mean, mode, and
median. We all know how to compute these from a dataset. For example, to compute the
median of a dataset, we sort the data and pick the number that sits in the 50th percentile.
However, the median computed in this way is the empirical median, i.e., it is a value
computed from a particular dataset. If the data is generated from a random variable (with
a given PDF), how do we compute the mean, median, and mode?

4.4.1 Median

Imagine you have a sequence of numbers as shown below.

n 1 2 3 4 5 6 7 8 9 · · · 100
xn 1.5 2.5 3.1 1.1 −0.4 −4.1 0.5 2.2 −3.4 · · · −1.4

How do we compute the median? We first sort the sequence (either in ascending order
or descending order), and then pick the middle one. On computer, we permute the samples

{x1′ , x2′ , . . . , xN ′} = sort{x1, x2, . . . , xN},

such that x1′ < x2′ < . . . < xN ′ is ordered. The median is the one positioned at the middle.
There are, of course, built-in commands such as median in MATLAB and np.median in
Python to perform the median operation.

Now, how do we compute the median if we are given a random variable X with a PDF
fX(x)? The answer is by integrating the PDF.
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Definition 4.9. Let X be a continuous random variable with PDF fX . The median
of X is a point c ∈ R such that∫ c

−∞
fX(x) dx =

∫ ∞
c

fX(x) dx. (4.14)

Why is the median defined in this way? This is because
∫ c

−∞ fX(x) dx is the area under

the curve on the left of c, and
∫∞
c

fX(x) dx is the area under the curve on the right of c.
The area under the curve tells us the percentage of numbers that are less than the cutoff.
Therefore, if the left area equals the right area, then c must be the median.

How to find the median from the PDF

� Find a point c that separates the PDF into two equal areas

Figure 4.14: [Left] The median is computed as the point such that the two areas under the curve are
equal. [Right] The median is computed as the point such that FX hits 0.5.

The median can also be evaluated from the CDF as follows.

Theorem 4.6. The median of a random variable X is the point c such that

FX(c) =
1

2
. (4.15)

Proof. Since FX(x) =
∫ x

−∞ fX(x′) dx′, we have

FX(c) =

∫ c

−∞
fX(x) dx

=

∫ ∞
c

fX(x) dx = 1− FX(c).

Rearranging the terms shows that FX(c) = 1
2 . □
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How to find median from CDF

� Find a point c such that FX(c) = 0.5.

Example 4.19. (Uniform random variable) Let X be a continuous random variable
with PDF fX(x) = 1

b−a for a ≤ x ≤ b, and is 0 otherwise. We know that the CDF of

X is FX(x) = x−a
b−a for a ≤ x ≤ b. Therefore, the median of X is the number c ∈ R

such that FX(c) = 1
2 . Substituting into the CDF yields c−a

b−a = 1
2 , which gives c = a+b

2 .

Example 4.20. (Exponential random variable) Let X be a continuous random vari-
able with PDF fX(x) = λe−λx for x ≥ 0. We know that the CDF of X is FX(x) =
1 − e−λx for x ≥ 0. The median of X is the point c such that FX(c) = 1

2 . This gives

1− e−λc = 1
2 , which is c = log 2

λ .

4.4.2 Mode

The mode is the peak of the PDF. We can see this from the definition below.

Definition 4.10. Let X be a continuous random variable. The mode is the point c
such that fX(x) attains the maximum:

c = argmax
x∈Ω

fX(x) = argmax
x∈Ω

d

dx
FX(x). (4.16)

The second equality holds because fX(x) = F ′X(x) = d
dx

∫ x

−∞ fX(t) dt. A pictorial illustra-
tion of mode is given in Figure 4.15. Note that the mode of a random variable is not unique,
e.g., a mixture of two identical Gaussians with different means has two modes.

Figure 4.15: [Left] The mode appears at the peak of the PDF. [Right] The mode appears at the steepest
slope of the CDF.
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How to find mode from PDF

� Find a point c such that fX(c) is maximized.

How to find mode from CDF

� Continuous: Find a point c such that FX(c) has the steepest slope.

� Discrete: Find a point c such that FX(c) has the biggest gap in a jump.

Example 4.21. Let X be a continuous random variable with PDF fX(x) = 6x(1−x)
for 0 ≤ x ≤ 1. The mode of X happens at argmax

x
fX(x). To find this maximum, we

take the derivative of fX . This gives

0 =
d

dx
fX(x) =

d

dx
6x(1− x) = 6(1− 2x).

Setting this equal to zero yields x = 1
2 .

To ensure that this point is a maximum, we take the second-order derivative:

d2

dx2
fX(x) =

d

dx
6(1− 2x) = −12 < 0.

Therefore, we conclude that x = 1
2 is a maximum point. Hence, the mode of X is

x = 1
2 .

4.4.3 Mean

We have defined the mean as the expectation of X. Here, we show how to compute the
expectation from the CDF. To simplify the demonstration, let us first assume that X > 0.

Lemma 4.1. Let X > 0. Then E[X] can be computed from FX as

E[X] =

∫ ∞
0

(1− FX(t)) dt. (4.17)

Proof. The trick is to change the integration order:∫ ∞
0

(1− FX(t)) dt =

∫ ∞
0

[1− P[X ≤ t]] dt =

∫ ∞
0

P[X > t] dt

=

∫ ∞
0

∫ ∞
t

fX(x) dx dt
(a)
=

∫ ∞
0

∫ x

0

fX(x) dt dx

=

∫ ∞
0

∫ x

0

dtfX(x) dx =

∫ ∞
0

xfX(x) dx = E[X].

Here, step (a) is due to the change of integration order. See Figure 4.16 for an illustration.
□

We draw a picture to illustrate the above lemma. As shown in Figure 4.17, the mean
of a positive random variable X > 0 is equivalent to the area above the CDF.
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Figure 4.16: The double integration can be evaluated by x then t, or t then x.

Figure 4.17: The mean of a positive random variable X > 0 can be calculated by integrating the CDF’s
complement.

Lemma 4.2. Let X < 0. Then E[X] can be computed from FX as

E[X] =

∫ 0

−∞
FX(t) dt. (4.18)

Proof. The idea here is also to change the integration order.∫ 0

−∞
FX(t) dt =

∫ 0

−∞
P[X ≤ t] dt =

∫ 0

−∞

∫ t

−∞
fX(x) dx dt

=

∫ 0

−∞

∫ 0

x

fX(x) dt dx =

∫ 0

−∞
xfX(x) dx = E[X].

□

Theorem 4.7. The mean of a random variable X can be computed from the CDF as

E[X] =

∫ ∞
0

(1− FX(t)) dt−
∫ 0

−∞
FX(t) dt. (4.19)
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Proof. For any random variable X, we can partition X = X+−X− where X+ and X− are
the positive and negative parts, respectively. Then, the above two lemmas will give us

E[X] = E[X+ −X−] = E[X+]− E[X−]

=

∫ ∞
0

(1− FX(t)) dt−
∫ 0

−∞
FX(t) dt.

□
As illustrated in Figure 4.18, this equation is equivalent to computing the areas above

and below the CDF and taking the difference.

Figure 4.18: The mean of a random variable X can be calculated by computing the area in the CDF.

How to find the mean from the CDF

� A formula is given by Equation (4.20):

E[X] =

∫ ∞
0

(1− FX(t)) dt−
∫ 0

−∞
FX(t) dt. (4.20)

� This result is not commonly used, but the proof technique of switching the inte-
gration order is important.

4.5 Uniform and Exponential Random Variables

There are many useful continuous random variables. In this section, we discuss two of them:
uniform random variables and exponential random variables. In the next section, we will
discuss the Gaussian random variables. Similarly to the way we discussed discrete random
variables, we take a generative / synthesis perspective when studying continuous random
variables. We assume we have access to the PDF of the random variables so we can derive
the theoretical mean and variance. The opposite direction, namely inferring the underlying
model parameters from a dataset, will be discussed later.
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4.5.1 Uniform random variables

Definition 4.11. Let X be a continuous uniform random variable. The PDF of X is

fX(x) =

{
1

b−a , a ≤ x ≤ b,

0, otherwise,
(4.21)

where [a, b] is the interval on which X is defined. We write

X ∼ Uniform(a, b)

to mean that X is drawn from a uniform distribution on an interval [a, b].
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(a) PDF (b) CDF

Figure 4.19: The PDF and CDF of X ∼ Uniform(0.2, 0.6).

The shape of the PDF of a uniform random variable is shown in Figure 4.19. In this
figure, we assume that the random variables X ∼ Uniform(0.2, 0.6) are taken from the
sample space Ω = [0, 1]. Note that the height of the uniform distribution is greater than 1,
since

fX(x) =

{
1

0.6−0.2 = 2.5, 0.2 ≤ x ≤ 0.6,

0, otherwise.

There is nothing wrong with this PDF, because fX(x) is the probability per unit length. If we
integrate fX(x) over any sub-interval between 0.2 and 0.6, we can show that the probability
is between 0 and 1.

The CDF of a uniform random variable can be determined by integrating fX(x):

FX(x) =

∫ x

−∞
fX(t) dt

=

∫ x

a

1

b− a
dt

=
x− a

b− a
, a ≤ x ≤ b.
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Therefore, the complete CDF is

FX(x) =


0, x < a,
x−a
b−a , a ≤ x ≤ b,

1, x > b.

The corresponding CDF for the PDF we showed in Figure 4.19(a) is shown in Figure 4.19(b).
It can be seen that although the height of the PDF exceeds 1, the CDF grows linearly and
saturates at 1.

Remark. The uniform distribution can also be defined for discrete random variables. In
this case, the probability mass function is given by

pX(k) =
1

b− a+ 1
, k = a, a+ 1, . . . , b.

The presence of “1” in the denominator of the PMF is because k runs from a to b, including
the two endpoints.

In MATLAB and Python, generating uniform random numbers can be done by calling
commands unifrnd (MATLAB), and stats.uniform.rvs (Python). For discrete uniform
random variables, in MATLAB the command is unidrnd, and in Python the command is
stats.randint.

% MATLAB code to generate 1000 uniform random numbers

a = 0; b = 1;

X = unifrnd(a,b,[1000,1]);

hist(X);

# Python code to generate 1000 uniform random numbers

import scipy.stats as stats

a = 0; b = 1;

X = stats.uniform.rvs(a,b,size=1000)

plt.hist(X);

To compute the empirical average and variance of the random numbers in MATLAB
we can call the command mean and var. The corresponding command in Python is np.mean
and np.var. We can also compute the median and mode, as shown below.

% MATLAB code to compute empirical mean, var, median, mode

X = unifrnd(a,b,[1000,1]);

M = mean(X);

V = var(X);

Med = median(X);

Mod = mode(X);

# Python code to compute empirical mean, var, median, mode

X = stats.uniform.rvs(a,b,size=1000)

M = np.mean(X)

V = np.var(X)
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Med = np.median(X)

Mod = stats.mode(X)

The mean and variance of a uniform random variable are given by the theorem below.

Theorem 4.8. If X ∼ Uniform(a, b), then

E[X] =
a+ b

2
and Var[X] =

(b− a)2

12
. (4.22)

Proof. We have derived these results before. Here is a recap for completeness:

E[X] =

∫ ∞
−∞

xfX(x) dx =

∫ b

a

x

b− a
dx =

a+ b

2
,

E[X2] =

∫ ∞
−∞

x2fX(x) dx =

∫ b

a

x2

b− a
dx =

a2 + ab+ b2

3
,

Var[X] = E[X2]− E[X]2 =
(b− a)2

12
.

□
The result should be intuitive because it says that the mean is the midpoint of the

PDF.
When will we encounter a uniform random variable? Uniform random variables are one

of the most elementary continuous random variables. Given a uniform random variable, we
can construct any random variable by using an appropriate transformation. We will discuss
this technique as part of our discussion about generating random numbers.

In MATLAB, computing the mean and variance of a uniform random variable can be
done using the command unifstat. The Python coommand is stats.uniform.stats.

% MATLAB code to compute mean and variance

a = 0; b = 1;

[M,V] = unifstat(a,b)

# Python code to compute mean and variance

import scipy.stats as stats

a = 0; b = 1;

M, V = stats.uniform.stats(a,b,moments=’mv’)

To evaluate the probability P[ℓ ≤ X ≤ u] for a uniform random variable, we can call
unifcdf in MATLAB and

% MATLAB code to compute the probability P(0.2 < X < 0.3)

a = 0; b = 1;

F = unifcdf(0.3,a,b) - unifcdf(0.2,a,b)
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# Python code to compute the probability P(0.2 < X < 0.3)

a = 0; b = 1;

F = stats.uniform.cdf(0.3,a,b)-stats.uniform.cdf(0.2,a,b)

An alternative is to define an object rv = stats.uniform, and call the CDF attribute:

# Python code to compute the probability P(0.2 < X < 0.3)

a = 0; b = 1;

rv = stats.uniform(a,b)

F = rv.cdf(0.3)-rv.cdf(0.2)

4.5.2 Exponential random variables

Definition 4.12. Let X be an exponential random variable. The PDF of X is

fX(x) =

{
λe−λx, x ≥ 0,

0, otherwise,
(4.23)

where λ > 0 is a parameter. We write

X ∼ Exponential(λ)

to mean that X is drawn from an exponential distribution of parameter λ.

In this definition, the parameter λ of the exponential random variable determines the rate
of decay. A large λ implies a faster decay. The PDF of an exponential random variable is
illustrated in Figure 4.20. We show two values of λ. Note that the initial value fX(0) is

fX(0) = λe−λ0 = λ.

Therefore, as long as λ > 1, fX(0) will exceed 1.
The CDF of an exponential random variable can be determined by

FX(x) =

∫ x

−∞
fX(t) dt

=

∫ x

0

λe−λt dt = 1− e−λx, x ≥ 0.

Therefore, if we consider the entire real line, the CDF is

FX(x) =

{
0, x < 0,

1− e−λx, x ≥ 0.

The corresponding CDFs for the PDFs shown in Figure 4.20(a) are shown in Fig-
ure 4.20(b). For larger λ, the PDF fX(x) decays faster but the CDF FX(x) increases faster.
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Figure 4.20: (a) The PDF and (c) the CDF of X ∼ Exponential(λ).

In MATLAB, the code used to generate Figure 4.20(a) is shown below. There are
multiple ways of doing this. An alternative way is to call exppdf, which will return the same
result. In Python, the corresponding command is stats.expon.pdf. Note that in Python
the parameter λ is specified in scale option.

% MATLAB code to plot the exponential PDF

lambda1 = 1/2; lambda2 = 1/5;

x = linspace(0,1,1000);

f1 = pdf(’exp’,x, lambda1);

f2 = pdf(’exp’,x, lambda2);

plot(x, f1, ’LineWidth’, 4, ’Color’, [0 0.2 0.8]); hold on;

plot(x, f2, ’LineWidth’, 4, ’Color’, [0.8 0.2 0]);

# Python code to plot the exponential PDF

lambd1 = 1/2

lambd2 = 1/5

x = np.linspace(0,1,1000)

f1 = stats.expon.pdf(x,scale=lambd1)

f2 = stats.expon.pdf(x,scale=lambd2)

plt.plot(x, f1)

plt.plot(x, f2)

To plot the CDF, we replace pdf by cdf. Similarly, in Python we replace expon.pdf

by expon.cdf.

% MATLAB code to plot the exponential CDF

F = cdf(’exp’,x, lambda1);

plot(x, F, ’LineWidth’, 4, ’Color’, [0 0.2 0.8]);

# Python code to plot the exponential CDF

F = stats.expon.cdf(x,scale=lambd1)

plt.plot(x, F)
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Theorem 4.9. If X ∼ Exponential(λ), then

E[X] =
1

λ
and Var[X] =

1

λ2
. (4.24)

Proof. We have discussed this proof before. Here is a recap for completeness:

E[X] =

∫ ∞
−∞

xfX(x) dx =

∫ ∞
0

λxe−λx dx

= −
∫ ∞
0

xde−λx

= −xe−λx
∣∣∣∞
0

+

∫ ∞
0

e−λx dx =
1

λ
,

E[X2] =

∫ ∞
−∞

x2fX(x) dx =

∫ ∞
0

λx2e−λx dx

= −
∫ ∞
0

x2de−λx

= −x2e−λx
∣∣∣∞
0

+

∫ ∞
0

2xe−λx dx

= 0 +
2

λ
E[X] =

2

λ2
.

Thus, Var[X] = E[X2]− E[X]2 = 1
λ2 .

□
Computing the mean and variance of an exponential random variable in MATLAB and

Python follows the similar procedures that we described above.

4.5.3 Origin of exponential random variables

Exponential random variables are closely related to Poisson random variables. Recall that
the definition of a Poisson random variable is a random variable that describes the number
of events that happen in a certain period, e.g., photon arrivals, number of pedestrians, phone
calls, etc. We summarize the origin of an exponential random variable as follows.

What is the origin of exponential random variables?

� An exponential random variable is the interarrival time between two consecutive
Poisson events.

� That is, an exponential random variable is how much time it takes to go from N
Poisson counts to N + 1 Poisson counts.

An example will clarify this concept. Imagine that you are waiting for a bus, as illus-
trated in Figure 4.21. Passengers arrive at the bus stop with an arrival rate λ per unit time.
Thus, for some time t, the average number of people that arrive is λt. Let N be a random
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variable denoting the number of people. We assume that N is Poisson with a parameter λt.
That is, for any duration t, the probability of observing n people follows the PMF

P[N = n] =
(λt)n

n!
e−λt.

Figure 4.21: For any fixed period of time t, the number of people N is modeled as a Poisson random
variable with a parameter λt.

Figure 4.22: The interarrival time T between two consecutive Poisson events is an exponential random
variable.

Let T be the interarrival time between two people, by which we mean the time between
two consecutive arrivals, as shown in Figure 4.22. Note that T is a random variable because
T depends on N , which is itself a random variable. To find the PDF of T , we first find the
CDF of T . We note that

P[T > t]
(a)
= P[interarrival time > t]

(b)
= P[no arrival in t]

(c)
= P[N = 0] =

(λt)0

0!
e−λt = e−λt.

In this set of arguments, (a) holds because T is the interarrival time, and (b) holds be-
cause interarrival time is between two consecutive arrivals. If the interarrival time is larger
than t, there is no arrival during the period. Equality (c) holds because N is the number of
passengers.

Since P[T > t] = 1− FT (t), where FT (t) is the CDF of T , we can show that

FT (t) = 1− e−λt,

fT (t) =
d

dt
FT (t) = λe−λt.

Therefore, the interarrival time T follows an exponential distribution.

Since exponential random variables are tightly connected to Poisson random variables,
we should expect them to be useful for modeling temporal events. We discuss two examples.
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4.5.4 Applications of exponential random variables

Example 4.22. (Photon arrivals) Single-photon image sensors are designed to op-
erate in the photon-limited regime. The number-one goal of using these sensors is to
count the number of arriving photons precisely. However, for some applications not
all single-photon image sensors are used to count photons. Some are used to measure
the time between two photon arrivals, such as time-of-flight systems. In this case, we
are interested in measuring the time it takes for a pulse to bounce back to the sensor.
The more time it takes for a pulse to come back, the greater the distance between the
object and the sensor. Other applications utilize the time information. For example,
high-dynamic-range imaging can be achieved by recording the time between two pho-
ton arrivals because brighter regions have a higher Poisson rate λ and darker regions
have a lower λ.

The figure above illustrates an example of high-dynamic-range imaging. When the
scene is bright, the large λ will generate more photons. Therefore, the interarrival time
between the consecutive photons will be relatively short. If we plot the histogram of
the interarrival time, we observe that most of the interarrival time will be concentrated
at small values. Dark regions behave in the opposite manner. The interarrival time will
typically be much longer. In addition, because there is more variation in the photon
arrival times, the histogram will look shorter and wider. Nevertheless, both cases are
modeled by the exponential random variable.

Example 4.23. (Energy-efficient escalator) Many airports today have installed variable-
speed escalators. These escalators change their speeds according to the traffic. If there
are no passengers for more than a certain period (say, 60 seconds), the escalator will
switch from the full-speed mode to the low-speed mode. For moderately busy esca-
lators, the variable-speed configuration can save energy. The interesting data-science
problem is to determine, given a traffic pattern, e.g., the one shown in Figure 4.23,
whether we can predict the amount of energy savings?

We will not dive into the details of this problem, but we can briefly discuss the
principle. Consider a fixed arrival rate λ (say, the average from 07:00 to 08:00). The in-
terarrival time, according to our discussion above, follows an exponential distribution.
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So we know that
fT (t) = λe−λt.

Suppose that the escalator switches to low-speed mode when the interarrival time
exceeds τ . Then we can define a new variable Y to denote the amount of time that
the escalator will operate in the low-speed mode. This new variable is

Y =

{
T − τ, T > τ,

0, T ≤ τ.

In other words, if the interarrival time T is more than τ , then the amount of time
saved Y takes the value T − τ , but if the interarrival time is less than τ , then there is
no saving.

Figure 4.23: The variable-speed escalator problem. [Left] We model the passengers as independent
Poisson arrivals. Thus, the interarrival time is exponential. [Right] A hypothetical passenger arrival
rate (number of people per minute), from 06:00 to 23:00.

Figure 4.24: The escalator problem requires modeling the cutoff threshold τ such that if T > τ ,
the savings are Y = T − τ . If T < τ , then Y = 0. The left-hand side of the figure shows how the
PDF of Y is constructed.

The PDF of Y can be computed according to Figure 4.24. There are two parts
to the calculation. When Y = 0, there is a probability mass such that

fY (0) = P[Y = 0] =

∫ τ

0

fT (t) dt =

∫ τ

0

λe−λt dt = 1− e−λτ .

For other values of y, we can show that

fY (y) = fT (y + τ) = λe−λ(y+τ).

Therefore, to summarize, we can show that the PDF of Y is

fY (y) =

{
(1− e−λτ )δ(y), y = 0,

λe−λ(y+τ), y > 0.
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Consequently, we can compute E[Y ] and Var[Y ] and analyze how these values change
for λ (which itself changes with the time of day). Furthermore, we can analyze the
amount of savings in terms of dollars. We leave these problems as an exercise.

Closing remark. The photon arrival problem and the escalator problem are two of many
examples we can find in which exponential random variables are useful for modeling a
problem. We did not go into the details of the problems because each of them requires some
additional modeling to address the real practical problem. We encourage you to explore these
problems further. Our message is simple: Many problems can be modeled by exponential
random variables, most of which are associated with time.

4.6 Gaussian Random Variables

We now discuss the most important continuous random variable — the Gaussian random
variable (also known as the normal random variable). We call it the most important random
variable because it is widely used in almost all scientific disciplines. Many of us have used
Gaussian random variables before, and perhaps its bell shape is the first lesson we learn in
statistics. However, there are many mysteries about Gaussian random variables which you
may have missed, such as: Where does the Gaussian random variable come from? Why does
it take a bell shape? What are the properties of a Gaussian random variable? The objective
of this section is to explain everything you need to know about a Gaussian random variable.

4.6.1 Definition of a Gaussian random variable

Definition 4.13. A Gaussian random variable is a random variable X such that its
PDF is

fX(x) =
1√
2πσ2

exp

{
− (x− µ)2

2σ2

}
, (4.25)

where (µ, σ2) are parameters of the distribution. We write

X ∼ Gaussian(µ, σ2) or X ∼ N (µ, σ2)

to say that X is drawn from a Gaussian distribution of parameter (µ, σ2).

Gaussian random variables have two parameters (µ, σ2). It is noteworthy that the mean
is µ and the variance is σ2 — these two parameters are exactly the first moment and the
second central moment of the random variable. Most other random variables do not have
this property.

Note that a Gaussian random variable is positive from −∞ to ∞. Thus, fX(x) has
a non-zero value for any x, even though the value may be extremely small. A Gaussian
random variable is also symmetric about µ. If µ = 0, then fX(x) is an even function.

The shape of the Gaussian is illustrated in Figure 4.25. When we fix the variance and
change the mean, the PDF of the Gaussian moves left or right depending on the sign of the
mean. When we fix the mean and change the variance, the PDF of the Gaussian changes
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its width. Since any PDF should integrate to unity, a wider Gaussian means that the PDF
is shorter. Note also that if σ is very small, it is possible that fX(x) > 1 although the
integration over Ω will still be 1.

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

 = -3

 = -0.3

 = 0

 = 1.2

 = 4

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

 = 0.8

 = 1

 = 2

 = 3

 = 4

µ changes, σ = 1 µ = 0, σ changes

Figure 4.25: A Gaussian random variable with different µ and σ.

On a computer, plotting the Gaussian PDF can be done by calling the function
pdf(’norm’,x) in MATLAB, and stats.norm.pdf in Python.

% MATLAB to generate a Gaussian PDF

x = linspace(-10,10,1000);

mu = 0; sigma = 1;

f = pdf(’norm’,x,mu,sigma);

plot(x, f);

# Python to generate a Gaussian PDF

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

x = np.linspace(-10,10,1000)

mu = 0; sigma = 1;

f = stats.norm.pdf(x,mu,sigma)

plt.plot(x,f)

Our next result concerns the mean and variance of a Gaussian random variable. You
may wonder why we need this theorem when we already know that µ is the mean and σ2 is
the variance. The answer is that we have not proven these two facts.

Theorem 4.10. If X ∼ Gaussian(µ, σ2), then

E[X] = µ, and Var[X] = σ2. (4.26)
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Proof. The expectation can be derived via substitution:

E[X] =
1√
2πσ2

∫ ∞
−∞

xe−
(x−µ)2

2σ2 dx

(a)
=

1√
2πσ2

∫ ∞
−∞

(y + µ)e−
y2

2σ2 dy

=
1√
2πσ2

∫ ∞
−∞

ye−
y2

2σ2 dy +
1√
2πσ2

∫ ∞
−∞

µe−
y2

2σ2 dy

(b)
= 0 + µ

(
1√
2πσ2

∫ ∞
−∞

e−
y2

2σ2 dy

)
(c)
= µ,

where in (a) we substitute y = x− µ, in (b) we use the fact that the first integrand is odd
so that the integration is 0, and in (c) we observe that integration over the entire sample
space of the PDF yields 1.

The variance is also derived by substitution.

Var[X] =
1√
2πσ2

∫ ∞
−∞

(x− µ)2e−
(x−µ)2

2σ2 dx

(a)
=

σ2

√
2π

∫ ∞
−∞

y2e−
y2

2 dy

=
σ2

√
2π

(
−ye−

y2

2

∣∣∣∞
−∞

)
+

σ2

√
2π

∫ ∞
−∞

e−
y2

2 dy

= 0 + σ2

(
1√
2π

∫ ∞
−∞

e−
y2

2 dy

)
= σ2,

where in (a) we substitute y = (x− µ)/σ.

4.6.2 Standard Gaussian

We need to evaluate the probability P[a ≤ X ≤ b] of a Gaussian random variable X in many
practical situations. This involves the integration of the Gaussian PDF, i.e., determining the
CDF. Unfortunately, there is no closed-form expression of P[a ≤ X ≤ b] in terms of (µ, σ2).
This leads to what we call the standard Gaussian.

Definition 4.14. The standard Gaussian (or standard normal) random variable X
has a PDF

fX(x) =
1√
2π

e−
x2

2 . (4.27)

That is, X ∼ N (0, 1) is a Gaussian with µ = 0 and σ2 = 1.

The CDF of the standard Gaussian can be determined by integrating the PDF. We have a
special notation for this CDF. Figure 4.26 illustrates the idea.
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Definition 4.15. The CDF of the standard Gaussian is defined as the Φ(·) function

Φ(x)
def
= FX(x) =

1√
2π

∫ x

−∞
e−

t2

2 dt. (4.28)

Figure 4.26: Definition of the CDF of the standard Gaussian Φ(x).

% MATLAB code to generate standard Gaussian PDF and CDF

x = linspace(-5,5,1000);

f = normpdf(x,0,1);

F = normcdf(x,0,1);

figure; plot(x, f);

figure; plot(x, F);

# Python code to generate standard Gaussian PDF and CDF

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

x = np.linspace(-10,10,1000)

f = stats.norm.pdf(x)

F = stats.norm.cdf(x)

plt.plot(x,f); plt.show()

plt.plot(x,F); plt.show()

The standard Gaussian’s CDF is related to a so-called error function defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (4.29)

It is easy to link Φ(x) with erf(x):

Φ(x) =
1

2

[
1 + erf

(
x√
2

)]
, and erf(x) = 2Φ(x

√
2)− 1.

With the standard Gaussian CDF, we can define the CDF of an arbitrary Gaussian.

214



4.6. GAUSSIAN RANDOM VARIABLES

Theorem 4.11 (CDF of an arbitrary Gaussian). Let X ∼ N (µ, σ2). Then

FX(x) = Φ

(
x− µ

σ

)
. (4.30)

Proof. We start by expressing FX(x):

FX(x) = P[X ≤ x]

=

∫ x

−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt.

Substituting y = t−µ
σ , and using the definition of standard Gaussian, we have∫ x

−∞

1√
2πσ2

e−
(t−µ)2

2σ2 dt =

∫ x−µ
σ

−∞

1√
2π

e−
y2

2 dy

= Φ

(
x− µ

σ

)
.

□

If you would like to verify this on a computer, you can try the following code.

% MATLAB code to verify standardized Gaussian

x = linspace(-5,5,1000);

mu = 3; sigma = 2;

f1 = normpdf((x-mu)/sigma,0,1); % standardized

f2 = normpdf(x, mu, sigma); % raw

# Python code to verify standardized Gaussian

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

x = np.linspace(-5,5,1000)

mu = 3; sigma = 2;

f1 = stats.norm.pdf((x-mu)/sigma,0,1) # standardized

f2 = stats.norm.cdf(x,mu,sigma) # raw

An immediate consequence of this result is that

P[a < X ≤ b] = Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
. (4.31)

To see this, note that

P[a < X ≤ b] = P[X ≤ b]− P[X ≤ a]

= Φ

(
b− µ

σ

)
− Φ

(
a− µ

σ

)
.

The inequality signs of the two end points are not important. That is, the statement also
holds for P[a ≤ X ≤ b] or P[a < X < b], because X is a continuous random variable at
every x. Thus, P[X = a] = P[X = b] = 0 for any a and b. Besides this, Φ has several
properties of interest. See if you can prove these:
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Corollary 4.1. Let X ∼ N (µ, σ2). Then the following results hold:

� Φ(y) = 1− Φ(−y).

� P[X ≥ b] = 1− Φ
(

b−µ
σ

)
.

� P[|X| ≥ b] = 1− Φ
(

b−µ
σ

)
+Φ

(
−b−µ

σ

)
.

4.6.3 Skewness and kurtosis

In modern data analysis we are sometimes interested in high-order moments. Here we con-
sider two useful quantities: skewness and kurtosis.

Definition 4.16. For a random variable X with PDF fX(x), define the following
central moments as

mean = E[X]
def
= µ,

variance = E
[
(X − µ)

2
]

def
= σ2,

skewness = E

[(
X − µ

σ

)3
]

def
= γ,

kurtosis = E

[(
X − µ

σ

)4
]

def
= κ, excess kurtosis

def
= κ− 3.

As you can see from the definitions above, skewness is the third central moment,
whereas kurtosis is the fourth central moment. Both skewness and kurtosis can be regarded
as “deviations” from a standard Gaussian —not in terms of mean and variance but in terms
of shape.

Skewness measures the asymmetry of the distribution. Figure 4.27 shows three differ-
ent distributions: one with left skewness, one with right skewness, and one symmetric. The
skewness of a curve is

� Skewed towards left: positive

� Skewed towards right: negative

� Symmetric: zero

What is skewness?

� E
[(

X−µ
σ

)3]
.

� Measures the asymmetry of the distribution.

� Gaussian has skewness 0.
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Figure 4.27: Skewness of a distribution measures the asymmetry of the distribution. In this example
the skewnesses are: orange = 0.8943, black = 0, blue = -1.414.

Kurtosis measures how heavy-tailed the distribution is. There are two forms of kurtosis:
one is the standard kurtosis, which is the fourth central moment, and the other is the excess
kurtosis, which is κexcess = κ − 3. The constant 3 comes from the kurtosis of a standard
Gaussian. Excess kurtosis is more widely used in data analysis. The interpretation of kurtosis
is the comparison to a Gaussian. If the kurtosis is positive, the distribution has a tail that
decays faster than a Gaussian. If the kurtosis is negative, the distribution has a tail that
decays more slowly than a Gaussian. Figure 4.28 illustrates the (excess) kurtosis of three
different distributions.
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Figure 4.28: Kurtosis of a distribution measures how heavy-tailed the distribution is. In this example,
the (excess) kurtoses are: orange = 2.8567, black = 0, blue = −0.1242.

What is kurtosis?

� κ = E
[(

X−µ
σ

)4]
.

� Measures how heavy-tailed the distribution is. Gaussian has kurtosis 3.

� Some statisticians prefer excess kurtosis κ − 3, so that Gaussian has excess
kurtosis 0.

217



CHAPTER 4. CONTINUOUS RANDOM VARIABLES

Random variable Mean Variance Skewness Excess kurtosis

µ σ2 γ κ− 3

Bernoulli p p(1− p) 1−2p√
p(1−p)

1
1−p + 1

p − 6

Binomial np np(1− p) 1−2p√
np(1−p)

6p2−6p+1
np(1−p)

Geometric 1
p

1−p
p2

2−p√
1−p

p2−6p+6
1−p

Poisson λ λ 1√
λ

1
λ

Uniform a+b
2

(b−a)2
12 0 − 6

5

Exponential 1
λ

1
λ2 2 6

Gaussian µ σ2 0 0

Table 4.1: The first few moments of commonly used random variables.

On a computer, computing the empirical skewness and kurtosis is done by built-in
commands. Their implementations are based on the finite-sample calculations

γ ≈ 1

N

N∑
n=1

(
Xn − µ

σ

)3

,

κ ≈ 1

N

N∑
n=1

(
Xn − µ

σ

)4

.

The MATLAB and Python built-in commands are shown below, using a gamma distribution
as an example.

% MATLAB code to compute skewness and kurtosis

X = random(’gamma’,3,5,[10000,1]);

s = skewness(X);

k = kurtosis(X);

# Python code to compute skewness and kurtosis

import scipy.stats as stats

X = stats.gamma.rvs(3,5,size=10000)

s = stats.skew(X)

k = stats.kurtosis(X)

Example 4.24. To further illustrate the behavior of skewness and kurtosis, we consider
an example using the gamma random variable X. The PDF of X is given by the
equation

fX(x) =
1

Γ(k)θk
xk−1e−

x
θ , (4.32)

where Γ(·) is known as the gamma function. If k is an integer, the gamma function is
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just the factorial: Γ(k) = (k − 1)!. A gamma random variable is parametrized by two
parameters (k, θ). As k increases or decreases, the shape of the PDF will change. For
example, when k = 1, the distribution is simplified to an exponential distribution.

Without going through the (tedious) integration, we can show that the skewness
and the (excess) kurtosis of Gamma(k, θ) are

skewness =
2√
k
,

(excess) kurtosis =
6

k
.

As we can see from these results, the skewness and kurtosis diminish as k grows. This
can be confirmed from the PDF of Gamma(k, θ) as shown in Figure 4.29.
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Figure 4.29: The PDF of a gamma distribution Gamma(k, θ), where θ = 1. The skewness and
the kurtosis are decaying to zero.

Example 4.25. Let us look at a real example. On April 15, 1912, RMS Titanic sank
after hitting an iceberg. The disaster killed 1502 out of 2224 passengers and crew. A
hundred years later, we want to analyze the data. At https://www.kaggle.com/c/

titanic/ there is a dataset collecting the identities, age, gender, etc., of the passengers.
We partition the dataset into two: one for those who died and the other one for those
who survived. We plot the histograms of the ages of the two groups and compute
several statistics of the dataset. Figure 4.30 shows the two datasets.
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Figure 4.30: The Titanic dataset https://www.kaggle.com/c/titanic/.

Statistics Group 1 (Died) Group 2 (Survived)
Mean 30.6262 28.3437
Standard Deviation 14.1721 14.9510
Skewness 0.5835 0.1795
Excess Kurtosis 0.2652 −0.0772

Note that the two groups of people have very similar means and standard devia-
tions. In other words, if we only compare the mean and standard deviation, it is nearly
impossible to differentiate the two groups. However, the skewness and kurtosis provide
more information related to the shape of the histograms. For example, Group 1 has
more positive skewness, whereas Group 2 is almost symmetrical. One interpretation is
that more young people offered lifeboats to children and older people. The kurtosis of
Group 1 is slightly positive, whereas that of Group 2 is slightly negative. Therefore,
high-order moments can sometimes be useful for data analysis.

4.6.4 Origin of Gaussian random variables

The Gaussian random variable has a long history. Here, we provide one perspective on why
Gaussian random variables are so useful. We give some intuitive arguments but leave the
formal mathematical treatment for later when we introduce the Central Limit Theorem.

Let’s begin with a numerical experiment. Consider throwing a fair die. We know that
this will give us a (discrete) uniform random variable X. If we repeat the experiment many
times we can plot the histogram, and it will return us a plot of 6 impulses with equal height,
as shown in Figure 4.31(a).

Now, suppose we throw two dice. Call them X1 and X2, and let Z = X1 + X2, i.e.,
the sum of two dice. We want to find the distribution of Z. To do so, we first list out all
the possible outcomes in the sample space; this gives us {(1, 1), (1, 2), . . . , (6, 6)}. We then
sum the numbers, which gives us a list of states of Z: {2, 3, 4, . . . , 12}. The probability of
getting these states is shown in Figure 4.31(b), which has a triangular shape. The triangular
shape makes sense because to get the state “2”, we must have the pair (1, 1), which is quite
unlikely. However, if we want to get the state 7, it would be much easier to get a pair, e.g.,
(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6) would all do the job.

Now, what will happen if we throw 5 dice and consider Z = X1+X2+· · ·+X5? It turns
out that the distribution will continue to evolve and give something like Figure 4.31(c).
This is starting to approximate a bell shape. Finally, if we throw 100 dice and consider
Z = X1 + X2 + · · · + X100, the distribution will look like Figure 4.31(d). The shape is
becoming a Gaussian! This numerical example demonstrates a fascinating phenomenon: As
we sum more random variables, the distribution of the sum will eventually converge to a
Gaussian.

If you are curious about how we plot the above figures, the following MATLAB and
Python code can be useful.

% MATLAB code to show the histogram of Z = X1+X2+X3

N = 10000;

X1 = randi(6,1,N);

X2 = randi(6,1,N);
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(a) X1 (b) X1 +X2 (c) X1 + · · ·+X5 (d) X1 + · · ·+X100

Figure 4.31: When adding uniform random variables, the overall distribution approaches a Gaussian as
the number of summed variables increase.

X3 = randi(6,1,N);

Z = X1 + X2 + X3;

histogram(Z, 2.5:18.5);

# Python code to show the histogram of Z = X1+X2+X3

import numpy as np

import matplotlib.pyplot as plt

N = 10000

X1 = np.random.randint(1,6,size=N)

X2 = np.random.randint(1,6,size=N)

X3 = np.random.randint(1,6,size=N)

Z = X1 + X2 + X3

plt.hist(Z,bins=np.arange(2.5,18.5))

Can we provide a more formal description of this? Yes, but we need some new mathe-
matical tools that we have not yet developed. So, for the time being, we will outline the flow
of the arguments and leave the technical details to a later chapter. Suppose we have two
independent random variables with identical distributions, e.g., X1 and X2, where both are
uniform. This gives us PDFs fX1

(x) and fX2
(x) that are two identical rectangular functions.

By what operation can we combine these two rectangular functions and create a triangle
function? The key lies in the concept of convolution. If you convolve two rectangle functions,
you will get a triangle function. Here we define the convolution of fX as

(fX ∗ fX)(x) =

∫ ∞
−∞

fX(τ)fX(x− τ) dτ.

In fact, for any pair of random variables X1 and X2 (not necessarily uniform random vari-
ables), the sum Z = X1+X2 will have a PDF given by the convolution of the two PDFs. We
have not yet proven this, but if you trust what we are saying, we can effectively generalize
this argument to many random variables. If we have N random variables, then the sum
Z = X1 + X2 + · · · + XN will have a PDF that is the result of N convolutions of all the
individual PDFs.

What is the PDF of X + Y ?

� Summing X + Y is equivalent to convolving the PDFs fX ∗ fY .

221



CHAPTER 4. CONTINUOUS RANDOM VARIABLES

� If you sum many random variables, you convolve all their PDFs.

How do we analyze these convolutions? We need a second set of tools related to Fourier
transforms. The Fourier transform of a PDF is known as the characteristic function, which
we will discuss later, but the name is not important now. What matters is the important
property of the Fourier transform, that a convolution in the original space is multiplication
in the Fourier space. That is,

F {(fX ∗ fX ∗ · · · ∗ fX)} = F{fX} · F{fX} · · · · · F{fX}.

Multiplication in the Fourier space is much easier to analyze. In particular, for independent
and identically distributed random variables, the multiplication will easily translate to ad-
dition in the exponent. Then, by truncating the exponent to the second order, we can show
that the limiting object in the Fourier space is approaching a Gaussian. Finally, since the
inverse Fourier transform of a Gaussian remains a Gaussian, we have shown that the infinite
convolution will give us a Gaussian.

Here is some numerical evidence for what we have just described. Recall that the
Fourier transform of a rectangle function is the sinc function. Therefore, if we have an
infinite convolution of rectangular functions, equivalently, we have an infinite product of sinc
functions in the Fourier space. Multiplying sinc functions is reasonably easy. See Figure 4.32
for the first three sincs. It is evident that with just three sinc functions, the shape closely
approximates a Gaussian.
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Figure 4.32: Convolving the PDF of a uniform distribution is equivalent to multiplying their Fourier
transforms in the Fourier space. As the number of convolutions grows, the product is gradually becoming
Gaussian.

How about distributions that are not rectangular? We invite you to numerically visu-
alize the effect when you convolve the function many times. You will see that as the number
of convolutions grows, the resulting function will become more and more like a Gaussian.
Regardless of what the input random variables are, as long as you add them, the sum will
have a distribution that looks like a Gaussian:

X1 +X2 + · · ·+XN ⇝ Gaussian.

We use the notation ⇝ to emphasize that the convergence is not the usual form of conver-
gence. We will make this precise later.
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The implication of this line of discussion is important. Regardless of the underlying
true physical process, if we are only interested in the sum (or average), the distribution
will be more or less Gaussian. In most engineering problems, we are looking at the sum
or average. For example, when generating an image using an image sensor, the sensor will
add a certain amount of read noise. Read noise is caused by the random fluctuation of the
electrons in the transistors due to thermal distortions. For high-photon-flux situations, we
are typically interested in the average read noise rather than the electron-level read noise.
Thus Gaussian random variables become a reasonable model for that. In other applications,
such as imaging through a turbulent medium, the random phase distortions (which alter
the phase of the wavefront) can also be modeled as a Gaussian random variable. Here is the
summary of the origin of a Gaussian random variable:

What is the origin of Gaussian?

� When we sum many independent random variables, the resulting random vari-
able is a Gaussian.

� This is known as the Central Limit Theorem. The theorem applies to any ran-
dom variable.

� Summing random variables is equivalent to convolving the PDFs. Convolving
PDFs infinitely many times yields the bell shape.

4.7 Functions of Random Variables

One common question we encounter in practice is the transformation of random variables.
The question can be summarized as follows: Given a random variable X with PDF fX(x)
and CDF FX(x), and supposing that Y = g(X) for some function g, what are fY (y) and
FY (y)? This is a prevalent question. For example, we measure the voltage V , and we want
to analyze the power P = V 2/R. This involves taking the square of a random variable.
Another example: We know the distribution of the phase Θ, but we want to analyze the
signal cos(ωt + Θ). This involves a cosine transformation. How do we convert one variable
to another? Answering this question is the goal of this section.

4.7.1 General principle

We will first outline the general principle for tackling this type of problem. In the following
subsection, we will give a few concrete examples.

Suppose we are given a random variable X with PDF fX(x) and CDF FX(x). Let Y =
g(X) for some known and fixed function g. For simplicity, we assume that g is monotonically
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increasing. In this case, the CDF of Y can be determined as follows.

FY (y)
(a)
= P[Y ≤ y]

(b)
= P[g(X) ≤ y]

(c)
= P[X ≤ g−1(y)]

(d)
= FX(g−1(y)).

This sequence of steps is not difficult to understand. Step (a) is the definition of CDF. Step
(b) substitutes g(X) for Y . Step (c) uses the fact that since g is invertible, we can apply
the inverse of g to both sides of g(X) ≤ y to yield X ≤ g−1(y). Step (d) is the definition of
the CDF, but this time applied to P[X ≤ ♣] = FX(♣), for some ♣.

It will be useful to visualize the situation in Figure 4.33. Here, we consider a uniformly
distributed X so that the CDF FX(x) is a straight line. According to FX , any samples
drawn according to FX are equally likely, as illustrated by the yellow dots on the x-axis.
As we transform the X’s through Y = g(X), we increase/decrease the spacing between
two samples. Therefore, some samples become more concentrated while some become less
concentrated. The distribution of these transformed samples (the yellow dots on the y-axis)
forms a new CDF FY (y). The result FY (y) = FX(g−1(y)) holds when we look at Y . The
samples are traveling with g−1 in order to go back to FX . Therefore, we need g−1 in the
formula.

Figure 4.33: When transforming a random variable X to Y = g(X), the distributions are defined
according to the spacing between samples. In this figure, a uniformly distributed X will become squeezed
by some parts of g and widened in other parts of g.

Why should we use the CDF and not the PDF in Figure 4.33? The advantage of the
CDF is that it is an increasing function. Therefore, no matter what the function g is, the
input and the output functions will still be increasing. If we use the PDF, then the non-
monotonic behavior of the PDF will interact with another nonlinear function g. It becomes
much harder to decouple the two.

We can carry out the integrations to determine FX(g−1(y)). It can be shown that

FX(g−1(y)) =

∫ g−1(y)

−∞
fX(x′) dx′, (4.33)
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and hence, by the fundamental theorem of calculus, we have

fY (y) =
d

dy
FY (y) =

d

dy
FX(g−1(y)) =

d

dy

∫ g−1(y)

−∞
fX(x′) dx′

=

(
d g−1(y)

dy

)
· fX(g−1(y)), (4.34)

where the last step is due to the chain rule. Based on this line of reasoning we can summarize
a “recipe” for this problem.

How to find the PDF of Y = g(X)

� Step 1: Find the CDF FY (y), which is FY (y) = FX(g−1(y)).

� Step 2: Find the PDF fY (y), which is fY (y) =
(

d g−1(y)
dy

)
· fX(g−1(y)).

This recipe works when g is a one-to-one mapping. If g is not one-to-one, e.g., g(x) = x2

implies g−1(y) = ±√y, then we will have some issues with the above two steps. When this
happens, then instead of writing X ≤ g−1(y) we need to determine the set {x | g(x) ≤ y}.

4.7.2 Examples

Example 4.26. (Linear transform) Let X be a random variable with PDF fX(x) and
CDF FX(x). Let Y = 2X +3. Find fY (y) and FY (y). Express the answers in terms of
fX(x) and FX(x).

Solution. We first note that

FY (y) = P[Y ≤ y]

= P[2X + 3 ≤ y]

= P
[
X ≤ y − 3

2

]
= FX

(
y − 3

2

)
.

Therefore, the PDF is

fY (y) =
d

dy
FY (y)

=
d

dy
FX

(
y − 3

2

)
= F ′X

(
y − 3

2

)
d

dy

(
y − 3

2

)
=

1

2
fX

(
y − 3

2

)
.

Follow-Up. (Linear transformation of a Gaussian random variable).Suppose X is a Gaus-
sian random variable with zero mean and unit variance, and let Y = aX+ b. Then the CDF
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and PDF of Y are respectively

FY (y) = FX

(
y − b

a

)
= Φ

(
y − b

a

)
,

fY (y) =
1

a
fX

(
y − b

a

)
=

1√
2πa

e−
(y−b)2

2a2 .

Follow-Up. (Linear transformation of an exponential random variable). Suppose X is an
exponential random variable with parameter λ, and let Y = aX + b. Then the CDF and
PDF of Y are respectively

FY (y) = FX

(
y − b

a

)
= 1− e−

λ
a (y−b), y ≥ b,

fY (y) =
1

a
fX

(
y − b

a

)
=

λ

a
e−

λ
a (y−b), y ≥ b.

Example 4.27. Let X be a random variable with PDF fX(x) and CDF FX(x). Sup-
posing that Y = X2, find fY (y) and FY (y). Express the answers in terms of fX(x)
and FX(x).

Solution. We note that

FY (y) = P[Y ≤ y] = P[X2 ≤ y] = P[−√y ≤ X ≤ √y]
= FX(

√
y)− FX(−√y).

Therefore, the PDF is

fY (y) =
d

dy
FY (y)

=
d

dy
(FX(

√
y)− FX(−√y))

= F ′X(
√
y)

d

dy

√
y − F ′X(−√y) d

dy
(−√y)

=
1

2
√
y
(fX(

√
y) + fX(−√y)) .
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Figure 4.34: When transforming a random variable X to Y = X2, the CDF becomes FY (y) =√
y−a

b−a
and the PDF becomes fY (y) = 1√

y(b−a)
.

Follow Up. (Square of a uniform random variable) Suppose X is a uniform random variable
in [a, b] (assume a > 0), and let Y = X2. Then the CDF and PDF of Y are respectively

FY (y) =

√
y − a

b− a
, a2 ≤ y ≤ b2,

fY (y) =
1

√
y(b− a)

, a2 ≤ y ≤ b2.

Example 4.28. Let X ∼ Uniform(0, 2π). Suppose Y = cosX. Find fY (y) and FY (y).

Solution. First, we need to find the CDF of X. This can be done by noting that

FX(x) =

∫ x

−∞
fX(x′) dx′ =

∫ x

0

1

2π
dx′ =

x

2π
.

Thus, the CDF of Y is

FY (y) = P[Y ≤ y] = P[cosX ≤ y]

= P[cos−1 y ≤ X ≤ 2π − cos−1 y]

= FX(2π − cos−1 y)− FX(cos−1 y)

= 1− cos−1 y

π
.

The PDF of Y is

fY (y) =
d

dy
FY (y) =

d

dy

(
1− cos−1 y

π

)
=

1

π
√

1− y2
,

227



CHAPTER 4. CONTINUOUS RANDOM VARIABLES

where we used the fact that d
dy cos−1 y = −1√

1−y2
.

Example 4.29. Let X be a random variable with PDF

fX(x) = aexe−ae
x

.

Let Y = eX , and find fY (y).

Solution. We first note that

FY (y) = P[Y ≤ y] = P[eX ≤ y]

= P[X ≤ log y] =

∫ log y

−∞
aexe−ae

x

dx.

To find the PDF, we recall the fundamental theorem of calculus. This gives us

fY (y) =
d

dy

∫ log y

−∞
aexe−ae

x

dx

=

(
d

dy
log y

)(
d

d log y

∫ log y

−∞
aexe−ae

x

dx

)

=
1

y
aelog ye−ae

log y

= ae−ay.

Closing remark. The transformation of random variables is a fundamental technique in
data science. The approach we have presented is the most rudimentary yet the most intuitive.
The key is to visualize the transformation and how the random samples are allocated after
the transformation. Note that the density of the random samples is related to the slope of
the CDF. Therefore, if the transformation maps many samples to similar values, the slope
of the CDF will be steep. Once you understand this picture, the transformation will be a
lot easier to understand.

Is it possible to replace the paper-and-pencil derivation of a transformation with a
computer? If the objective is to transform random realizations, then the answer is yes
because your goal is to transform numbers to numbers, which can be done on a computer.
For example, transforming a sample x1 to

√
x1 is straightforward on a computer. However,

if the objective is to derive the theoretical expression of the PDF, then the answer is no.
Why might we want to derive the theoretical PDF? We might want to analyze the mean,
variance, or other statistical properties. We may also want to reverse-engineer and determine
a transformation that can yield a specific PDF. This would require a paper-and-pencil
derivation. In what follows, we will discuss a handy application of the transformations.

What are the rules of thumb for transformation of random variables?

� Always find the CDF FY (y) = P[g(X) ≤ y]. Ask yourself: What are the values
of X such that g(X) ≤ y? Think of the cosine example.
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� Sometimes you do not need to solve for FY (y) explicitly. The fundamental the-
orem of calculus can help you find fY (y).

� Draw pictures. Ask yourself whether you need to squeeze or stretch the samples.

4.8 Generating Random Numbers

Most scientific computing software nowadays has built-in random number generators. For
common types of random variables, e.g., Gaussian or exponential, these random number
generators can easily generate numbers according to the chosen distribution. However, if we
are given an arbitrary PDF (or PMF) that is not among the list of predefined distributions,
how can we generate random numbers according to the PDF or PMF we want?

4.8.1 General principle

Generating random numbers according to the desired distribution can be formulated as
an inverse problem. Suppose that we can generate uniformly random numbers according
to Uniform(0,1). This is a fragile assumption, and this process can be done on almost all
computers today. Let us call this random variable U and its realization u. Suppose that we
also have a desired distribution fX(x) (and its CDF FX(x)). We can put the two random
variables U and X on the two axes of Figure 4.35, yielding an input-output relationship.
The inverse problem is: By using what transformation g, such that X = g(U), can we make
sure that X is distributed according to fX(x) (or FX(x))?

Figure 4.35: Generating random numbers according to a known CDF. The idea is to first generate a
uniform(0,1) random variable, then do an inverse mapping F−1

X .

Theorem 4.12. The transformation g that can turn a uniform random variable into
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a random variable following a distribution FX(x) is given by

g(u) = F−1X (u). (4.35)

That is, if g = F−1X , then g(U) will be distributed according to fX (or FX).

Proof. First, we know that if U ∼ Uniform(0, 1), then fU (u) = 1 for 0 ≤ u ≤ 1, so

FU (u) =

∫ u

−∞
fU (u) du = u,

for 0 ≤ u ≤ 1. Let g = F−1X and define Y = g(U). Then the CDF of Y is

FY (y) = P[Y ≤ y] = P[g(U) ≤ y]

= P[F−1X (U) ≤ y]

= P[U ≤ FX(y)] = FX(y).

Therefore, we have shown that the CDF of Y is the CDF of X. □

The theorem above states that if we want a distribution FX , then the transformation
should be g = F−1X . This suggests a two-step process for generating random numbers.

How do we generate random numbers from an arbitrary distribution FX?

� Step 1: Generate a random number U ∼ Uniform(0, 1).

� Step 2: Let
Y = F−1X (U). (4.36)

Then the distribution of Y is FX .

4.8.2 Examples

Example 4.30. How can we generate Gaussian random numbers with mean µ and
variance σ2 from uniform random numbers?

First, we generate U ∼ Uniform(0, 1). The CDF of the ideal distribution is

FX(x) = Φ

(
x− µ

σ

)
.

Therefore, the transformation g is

g(U) = F−1X (U) = σΦ−1(U) + µ.

In Figure 4.36, we plot the CDF of FX and the transformation g.

230



4.8. GENERATING RANDOM NUMBERS

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

-4

(a) FX(·) (b) g(·)

Figure 4.36: To generate random numbers according to Gaussian(0, 1), we plot its CDF in (a)
and the transformation g in (b).

To visualize the random variables before and after the transformation, we plot
the histograms in Figure 4.37.
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Figure 4.37: (a) PDF of the uniform random variable. (b) The PDF of the transformed random
variable.

The MATLAB and Python codes used to generate the histograms above are shown
below.

% MATLAB code to generate Gaussian from uniform

mu = 3;

sigma = 2;

U = rand(10000,1);

gU = sigma*icdf(’norm’,U,0,1)+mu;

figure; hist(U);

figure; hist(gU);

# Python code to generate Gaussian from uniform

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats
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mu = 3

sigma = 2

U = stats.uniform.rvs(0,1,size=10000)

gU = sigma*stats.norm.ppf(U)+mu

plt.hist(U); plt.show()

plt.hist(gU); plt.show()

Example 4.31. How can we generate exponential random numbers with parameter λ
from uniform random numbers?

First, we generate U ∼ Uniform(0, 1). The CDF of the ideal distribution is

FX(x) = 1− e−λx.

Therefore, the transformation g is

g(U) = F−1X (U) = − 1

λ
log(1− U).

The CDF of the exponential random variable and the transformation g are shown
in Figure 4.38.
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Figure 4.38: To generate random numbers according to Exponential(1), we plot its CDF in (a)
and the transformation g in (b).

The PDF of the uniform random variable U and the PDF of the transformed
variable g(U) are shown in Figure 4.39.
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Figure 4.39: (a) PDF of the uniform random variable. (b) The PDF of the transformed random
variable.

The MATLAB and Python codes for this transformation are shown below.

% MATLAB code to generate exponential random variables

lambda = 1;

U = rand(10000,1);

gU = -(1/lambda)*log(1-U);

# Python code to generate exponential random variables

import numpy as np

import scipy.stats as stats

lambd = 1;

U = stats.uniform.rvs(0,1,size=10000)

gU = -(1/lambd)*np.log(1-U)

Example 4.32. How can we generate the 4 integers 1, 2, 3, 4, according to the his-
togram [0.1 0.5 0.3 0.1], from uniform random numbers?

First, we generate U ∼ Uniform(0, 1). The CDF of the ideal distribution is

FX(x) =


0.1, x = 1,

0.1 + 0.5 = 0.6, x = 2,

0.1 + 0.5 + 0.3 = 0.9, x = 3,

0.1 + 0.5 + 0.3 + 0.1 = 1.0, x = 4.

This CDF is not invertible. However, we can still define the “inverse” mapping
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as

g(U) = F−1X (U)

=


1, 0.0 ≤ U ≤ 0.1,

2, 0.1 < U ≤ 0.6,

3, 0.6 < U ≤ 0.9,

4, 0.9 < U ≤ 1.0.

For example, if 0.1 < U ≤ 0.6, then on the black curve shown in Figure 4.40(a), we
are looking at the second vertical line from the left. This will go to “2” on the x-axis.
Therefore, the inversely mapped value is 2 for 0.1 < U ≤ 0.6.
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Figure 4.40: To generate random numbers according to a predefined histogram, we first define
the CDF in (a) and the corresponding transformation in (b).

The PDFs of the transformed variables, before and after, are shown in Fig-
ure 4.41.
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Figure 4.41: (a) PDF of the uniform random variable. (b) The PDF of the transformed random
variable.

In MATLAB, the above PDFs can be plotted using the commands below. In Python,
we need to use the logical comparison np.logical_and to identify the indices. An alternative
is to use gU[((U<=0.5)*(U>=0.0)).astype(np.bool)]=1.
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% MATLAB code to generate the desired random variables

U = rand(10000,1);

gU = zeros(10000,1);

gU((U>=0) & (U<=0.1)) = 1;

gU((U>0.1) & (U<=0.6)) = 2;

gU((U>0.6) & (U<=0.9)) = 3;

gU((U>0.9) & (U<=1)) = 4;

# Python code to generate the desired random variables

import numpy as np

import scipy.stats as stats

U = stats.uniform.rvs(0,1,size=10000)

gU = np.zeros(10000)

gU[np.logical_and(U >= 0.0, U <= 0.1)] = 1

gU[np.logical_and(U > 0.1, U <= 0.6)] = 2

gU[np.logical_and(U > 0.6, U <= 0.9)] = 3

gU[np.logical_and(U > 0.9, U <= 1)] = 4

4.9 Summary

Let us summarize this chapter by revisiting the four bullet points from the beginning of the
chapter.

� Definition of a continuous random variable. Continuous random variables are mea-
sured by lengths, areas, and volumes, which are all defined by integrations. This makes
them different from discrete random variables, which are measured by counts (and
summations). Because of the different measures being used to define random variables,
we consequently have different ways of defining expectation, variance, moments, etc.,
all in terms of integrations.

� Unification of discrete and continuous random variables. The unification is done by
the CDF. The CDF of a discrete random variable can be written as a train of step
functions. After taking the derivative, we will obtain the PDF, which is a train of
impulses.

� Origin of Gaussian random variables. The origin of the Gaussian random variable lies
in the fact that many observable events in engineering are sums of independent events.
The summation of independent random variables is equivalent to taking convolutions
of the PDFs. At the limit, they will converge to a bell-shaped function, which is the
Gaussian. Gaussians are everywhere because we observe sums more often than we
observe individual states.

� Transformation of random variables. Transformation of random variables is done
in the CDF space. The transformation can be used to generate random numbers
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according to a predefined distribution. Specifically, if we want to generate random
numbers according to FX , then the transformation is g = F−1X .
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4.11 Problems

Exercise 1. (Video Solution)
Let X be a Gaussian random variable with µ = 5 and σ2 = 16.

(a) Find P[X > 4] and P[2 ≤ X ≤ 7].

(b) If P[X < a] = 0.8869, find a.

(c) If P[X > b] = 0.1131, find b.

(d) If P[13 < X ≤ c] = 0.0011, find c.

Exercise 2. (Video Solution)
Compute E[Y ] and E[Y 2] for the following random variables:

(a) Y = A cos(ωt+ θ), where A ∼ N (µ, σ2).

(b) Y = a cos(ωt+Θ), where Θ ∼ Uniform(0, 2π).

(c) Y = a cos(ωT + θ), where T ∼ Uniform
(
−π

ω ,
π
ω

)
.

Exercise 3. (Video Solution)
Consider a CDF

FX(x) =


0, if x < −1,
0.5, if − 1 ≤ x < 0,

(1 + x)/2, if 0 ≤ x < 1,

1, otherwise.

(a) Find P[X < −1], P[−0.5 < X < 0.5] and P[X > 0.5].

(b) Find fX(x).
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Exercise 4. (Video Solution)
A random variable X has CDF:

FX(x) =

{
0, if x < 0,

1− 1
4e
−2x, if x ≥ 0.

(a) Find P[X ≤ 2], P[X = 0], P[X < 0], P[2 < X < 6] and P[X > 10].

(b) Find fX(x).

Exercise 5. (Video Solution)
A random variable X has PDF

fX(x) =

{
cx(1− x2), 0 ≤ x ≤ 1,

0, otherwise.

Find c, FX(x), and E[X].

Exercise 6. (Video Solution)
A continuous random variable X has a cumulative distribution

FX(x) =


0, x < 0,

0.5 + c sin2(πx/2), 0 ≤ x ≤ 1,

1, x > 1.

(a) What values can c assume?

(b) Find fX(x).

Exercise 7. (Video Solution)
A continuous random variable X is uniformly distributed in [−2, 2].

(a) Let Y = sin(πX/8). Find fY (y).

(b) Let Z = −2X2 + 3. Find fZ(z).

Hint: Compute FY (y) from FX(x), and use d
dy sin−1 y = 1√

1−y2
.

Exercise 8.
Let Y = eX .

(a) Find the CDF and PDF of Y in terms of the CDF and PDF of X.

(b) Find the PDF of Y when X is a Gaussian random variable. In this case, Y is said to
be a lognormal random variable.

Exercise 9.
The random variable X has the PDF

fX(x) =

{
1

2
√
x
, 0 ≤ x ≤ 1,

0, otherwise.
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Let Y be a new random variable

Y =


0, X < 0,√
X, 0 ≤ X ≤ 1,

1, X > 1.

Find FY (y) and fY (y), for −∞ < y <∞.

Exercise 10.
A random variable X has the PDF

fX(x) =

{
2xe−x

2

, x ≥ 0,

0, x < 0.

Let

Y = g(X) =

{
1− e−X

2

, X ≥ 0,

0, X < 0.

Find the PDF of Y .

Exercise 11.
A random variable X has the PDF

fX(x) =
1

2
e−|x|, −∞ < x <∞.

Let Y = g(X) = e−X . Find the PDF of Y .

Exercise 12.
A random variable X has the PDF

fX(x) =
1√
2πσ2

e−
x2

2σ2 , −∞ < x <∞.

Find the PDF of Y where

Y = g(X) =

{
X, |X| > K,

−X, |X| < K.

Exercise 13.
A random variable X has the PDF

fX(x) =
1

x2
√
2π

e−
x2

2 , −∞ < x <∞.

Let Y = g(X) = 1
X . Find the PDF of Y .

Exercise 14.
A random variable X has the CDF

FX(x) =


0, x < 0,

xα, 0 ≤ x ≤ 1,

1, x > 1,
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with α > 0. Find the CDF of Y if

Y = g(X) = − logX.

Exercise 15.
Energy efficiency is an important aspect of designing electrical systems. In some modern
buildings (e.g., airports), traditional escalators are being replaced by a new type of “smart”
escalator which can automatically switch between a normal operating mode and a standby
mode depending on the flow of pedestrians.

(a) The arrival of pedestrians can be modeled as a Poisson random variable. Let N be the
number of arrivals, and let λ be the arrival rate (people per minute). For a period of
t minutes, show that the probability that there are n arrivals is

P(N = n) =
(λt)n

n!
e−λt.

(b) Let T be a random variable denoting the interarrival time (i.e., the time between two
consecutive arrivals). Show that

P(T > t) = e−λt.

Also, determine FT (t) and fT (t). Sketch fT (t).

(Hint: Note that P(T > t) = P(no arrival in t minutes).)

(c) Suppose that the escalator will go into standby mode if there are no pedestrians for
t0 = 30 seconds. Let Y be a random variable denoting the amount of time that the
escalator is in standby mode. That is, let

Y =

{
0, if T ≤ t0,

T − t0, if T > t0.

Find E[Y ].
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Chapter 5

Joint Distributions

When you go to a concert hall, sometimes you may want to see a solo violin concert, but other
times you may want to see a symphony. Symphonies are appealing because many instruments
are playing together. Random variables are similar. While single random variables are useful
for modeling simple events, we use multiple random variables to describe complex events.
The multiple random variables can be either independent or correlated. When many random
variables are present in the problem, we enter the subject of joint distribution.

What are joint distributions?

In the simplest sense, joint distributions are extensions of the PDFs and PMFs we studied
in the previous chapters. We summarize them as follows.

Joint distributions are high-dimensional PDFs (or PMFs or CDFs).

What do we mean by a high-dimensional PDF? We know that a single random variable is
characterized by a 1-dimensional PDF fX(x). If we have a pair of random variables, then
we use a 2-dimensional function fX,Y (x, y), and if we have a triplet of random variables,
we use a 3-dimensional function fX,Y,Z(x, y, z). In general, the dimensionality of the PDF
grows as the number of variables:

fX(x)︸ ︷︷ ︸
one variable

=⇒ fX1,X2(x1, x2)︸ ︷︷ ︸
two variables

=⇒ · · · =⇒ fX1,...,XN
(x1, . . . , xN )︸ ︷︷ ︸

N variables

.

For busy engineers like us, fX1,...,XN
(x1, . . . , xN ) is not a friendly notation. A more con-

cise way to write fX1,...,XN
(x1, . . . , xN ) is to define a vector of random variables X =

[X1, X2, . . . , XN ]T with a vector of states x = [x1, x2, . . . , xN ]T , and to define the PDF as

fX(x) = fX1,...,XN
(x1, . . . , xN ).

Under what circumstance will we encounter creatures like fX(x)? Believe it or not,
these high-dimensional PDFs are everywhere. In 2010, computer-vision scientists created
the ImageNet dataset, containing 14 million images with ground-truth class labels. This
enormous dataset has enabled a great blossoming of machine learning over the past several
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Figure 5.1: Joint distributions are ubiquitous in modern data analysis. For example, an image from a
dataset can be represented by a high-dimensional vector x. Each vector has a certain probability of
being present. This probability is described by the high-dimensional joint PDF fX(x). The goal of this
chapter is to understand the properties of this fX .
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Figure 5.2: A 2-dimensional PDF fX,Y (x, y) of a pair of random variables (X,Y ) and their respective
1D PDFs fX(x) and fY (y).

decades, in which many advances in deep learning have been made. Fundamentally, the
ImageNet dataset provides a large collection of samples drawn from a latent distribution
that is high-dimensional. Each sample in the ImageNet dataset is a 224×224×3 image (the
three numbers stand for the image’s height, width, and color). If we convert this image into
a vector, then the sample will have a dimension of 224× 224× 3 = 150,528. In other words,
the sample is a vector x ∈ R150528×1. The probability of obtaining a particular sample x
is determined by probability density function fX(x). For example, it is more likely to get
an image containing trees than one containing a Ferrari. The manifold generated by fX(x)
can be extremely complex, as illustrated in Figure 5.1.

The story of ImageNet is just one of the many instances for which we use a joint
distribution fX(x). Joint distributions are ubiquitous. If you do data science, you must
understand joint distributions. However, extending a 1-dimensional function fX(x) to a
2-dimensional function fX,Y (x, y) and then to a N -dimensional function fX(x) is not trivial.
The goal of this chapter is to guide you through these important steps.

Plan of Part 1 of this chapter: Two variables

This chapter is broadly divided into two halves. In the first half, we will look at a pair of
random variables.

� Definition of fX,Y (x, y). The first thing we need to learn is the definition of a joint
distribution with two variables. Since we have two variables, the joint probability
density function (or probability mass function) is a 2-dimensional function. A point
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on this 2D function is the probability density evaluated by a pair of variables X = x
and Y = y, as illustrated in Figure 5.2. However, how do we formally define this 2D
function? How is it related to the probability measure? Is there a way we can retrieve
fX(x) and fY (y) from fX,Y (x, y), as illustrated on the right-hand sides of Figure 5.2?
These questions will be answered in Section 5.1.

� Joint expectation E[XY ]. When we have a pair of random variables, how should we
define the expectation? In Section 5.2, we will show that the most natural way to define
the joint expectation is in terms of E[XY ], i.e., the expectation of the product. There
is a surprising and beautiful connection between this “expectation of the product” and
the cosine angle between two vectors, thereby showing that E[XY ] is the correlation
between X and Y .

� The reason for studying a pair of random variables is to spell out the cause-effect
relationship between the variables. This cannot be done without conditional distri-
butions; this will be explained in Section 5.3. Conditional distributions provide an
extremely important computational tool for decoupling complex events into simpler
events. Such decomposition allows us to solve difficult joint expectation problems via
simple conditional expectations; this subject will be covered in Section 5.4.

� If you recall our discussions about the origin of a Gaussian random variable, we claimed
that the PDF of X + Y is the convolution between fX and fY . Why is this so? We
will answer this question in terms of joint distributions in Section 5.5.

Plan of Part 2 of this chapter: N variables

The second half of the chapter focuses on the general case of N random variables. This
requires the definitions of a random vector X = [X1, . . . , XN ]T , a joint distribution fX(x),
and the corresponding expectations E[X]. To make our discussions concrete, we will focus
on the case of high-dimensional Gaussian random variables and discuss the following topics.

� Covariance matrices/correlation matrices. If a pair of random variables can define
the correlation through the expectation of the product E[X1X2], then for a vector of
random variables we can consider a matrix of correlations in the form

R =


E[X1X1] E[X1X2] · · · E[X1XN ]
E[X2X1] E[X2X2] · · · E[X2XN ]

...
...

. . .
...

E[XNX1] E[XNX2] · · · E[XNXN ]

 .

What are the properties of the matrix? How does it affect the shape of the high-
dimensional Gaussian? If we have a dataset of vectors, how do we estimate this matrix
from the data? We will answer these questions in Section 5.6 and Section 5.7.

� Principal-component analysis. Given the covariance matrix, we can perform some
very useful data analyses, such as the principal-component analysis in Section 5.8.
The question we will ask is: Among the many components, which one is the principal
component? If we can find the principal component(s), we can effectively perform
dimensionality reduction by projecting a high-dimensional vector into low-dimensional
representations. We will introduce an application for face detection.
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Figure 5.3: When there is a pair of random variables, we can regard the sample space as a set of
coordinates. The random variables are 2D mappings from a coordinate ω in ΩX × ΩY to another
coordinate X(ω) in R2.

5.1 Joint PMF and Joint PDF

Probability is a measure of the size of a set. This principle applies to discrete random vari-
ables, continuous random variables, single random variables, and multiple random variables.
In situations with a pair of random variables, the measure should be applied to the coordi-
nate (X,Y ) represented by the random variables X and Y . Consequently, when measuring
the probability, we either count these coordinates or integrate the area covered by these
coordinates. In this section, we formalize this notion of measuring 2D events.

5.1.1 Probability measure in 2D

Consider two random variables X and Y . Let the sample space of X and Y be ΩX and
ΩY , respectively. Define the Cartesian product of ΩX and ΩY as ΩX × ΩY = {(x, y) | x ∈
ΩX and y ∈ ΩY }. That is, ΩX × ΩY contains all possible pairs (X,Y ).

Example 5.1. If ΩX = {1, 2} and ΩY = {4, 5}, then ΩX × ΩY = {(1, 4), (1, 5),
(2, 4), (2, 5)}.
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Example 5.2. If ΩX = [3, 4] and ΩY = [1, 2], then ΩX × ΩY = a rectangle with two
diagonal vertices as (3, 1) and (4, 2).

Random variables are mappings from the sample space to the real line. If ω ∈ ΩX is
mapped to X(ω) ∈ R, and ξ ∈ ΩY is mapped to Y (ξ) ∈ R, then a coordinate ω = (ω, ξ) in
the sample space ΩX ×ΩY should be mapped to a coordinate (X(ω), Y (ξ)) in the 2D plane.

ω
def
=

[
ω
ξ

]
7−→

[
X(ω)
Y (ξ)

]
def
= X(ω).

We denote such a vector-to-vector mapping as X(·) : ΩX × ΩY → R × R, as illustrated in
Figure 5.3.

Therefore, if we have an event A ∈ R2, the probability that A happens is

P[A] = P[{ω |X(ω) ∈ A}]

= P
[{[

ω
ξ

] ∣∣∣∣ [X(ω)
Y (ξ)

]
∈ A

}]
= P

[{[
ω
ξ

]
∈X−1(A)

}]
= P[ω ∈X−1(A)].

In other words, we take the coordinate X(ω) and find its inverse image X−1(A). The size
of this inverse image X−1(A) in the sample space ΩX × ΩY is then the probability. We
summarize this general principle as follows.

How to measure probability in 2D

For a pair of random variables X = (X,Y ), the probability of an event A is measured
in the product space ΩX × ΩY with the size

P[{ω |X−1(A)}].

This definition is quite abstract. To make it more concrete, we will look at discrete and
continuous random variables.

5.1.2 Discrete random variables

Suppose that the random variables X and Y are discrete. Let A = {X(ω) = x, Y (ξ) = y}
be a discrete event. Then the above definition tells us that the probability of A is

P[A] = P
[
(ω, ξ)

∣∣∣∣ X(ω) = x, and Y (ξ) = y

]
= P[X = x and Y = y]︸ ︷︷ ︸

def
= pX,Y (x,y)

.

We define this probability as the joint probability mass function (joint PMF) pX,Y (x, y).
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Definition 5.1. Let X and Y be two discrete random variables. The joint PMF of X
and Y is defined as

pX,Y (x, y) = P[X = x and Y = y] = P
[
(ω, ξ)

∣∣∣∣ X(ω) = x, and Y (ξ) = y

]
. (5.1)

We sometimes write the joint PMF as pX,Y (x, y) = P[X = x, Y = y].

Figure 5.4: A joint PMF for a pair of discrete random variables consists of an array of impulses. To
measure the size of the event A, we sum all the impulses inside A.

Figure 5.4 shows a graphical portrayal of the joint PMF. In a nutshell, pX,Y (x, y)
can be considered as a 2D extension of a single variable PMF. The probabilities are still
represented by the impulses, but the domain of these impulses is now a 2D plane. If we have
an event A, then the size of the event is

P[A] =
∑

(x,y)∈A

pX,Y (x, y).

Example 5.3. Let X be a coin flip, Y be a die. The sample space of X is {0, 1},
whereas the sample space of Y is {1, 2, 3, 4, 5, 6}. The joint PMF, according to our
definition, is the probability P[X = x and Y = y], where x takes a binary state and Y
takes one of the 6 states. The following table summarizes all the 12 states of the joint
distribution.

Y
1 2 3 4 5 6

X = 0 1
12

1
12

1
12

1
12

1
12

1
12

X = 1 1
12

1
12

1
12

1
12

1
12

1
12

In this table, since there are 12 coordinates, and each coordinate has an equal
chance of appearing, the probability for each coordinate becomes 1/12. Therefore, the
joint PMF of X and Y is

pX,Y (x, y) =
1

12
, x = 0, 1, y = 1, 2, 3, 4, 5, 6.
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In this example, we observe that if X and Y are not interacting with each other (for-
mally, independent), the joint PMF is the product of the two individual probabilities.

Example 5.4. In the previous example, if we define A = {X+Y = 3}, the probability
P[A] is

P[A] =
∑

(x,y)∈A

pX,Y (x, y) = pX,Y (0, 3) + pX,Y (1, 2)

=
2

12
.

If B = {min(X,Y ) = 1}, the probability P[B] is

P[B] =
∑

(x,y)∈B

pX,Y (x, y)

= pX,Y (1, 1) + pX,Y (1, 2) + pX,Y (1, 3)

+ pX,Y (1, 4) + pX,Y (1, 5) + pX,Y (1, 6)

=
6

12
.

5.1.3 Continuous random variables

The continuous version of the joint PMF is called the joint probability density function
(joint PDF), denoted by fX,Y (x, y). A joint PDF is analogous to a joint PMF. For example,
integrating it will give us the probability.

Definition 5.2. Let X and Y be two continuous random variables. The joint PDF of
X and Y is a function fX,Y (x, y) that can be integrated to yield a probability

P[A] =
∫
A
fX,Y (x, y) dx dy, (5.2)

for any event A ⊆ ΩX × ΩY .

Pictorially, we can view fX,Y as a 2D function where the height at a coordinate (x, y) is
fX,Y (x, y), as can be seen from Figure 5.5. To compute the probability that (X,Y ) ∈ A,
we integrate the function fX,Y with respect to the area covered by the set A. For example,
if the set A is a rectangular box A = [a, b]× [c, d], then the integration becomes

P[A] = P[a ≤ X ≤ b, c ≤ Y ≤ d]

=

∫ d

c

∫ b

a

fX,Y (x, y) dx dy.
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Figure 5.5: A joint PDF for a pair of continuous random variables is a surface in the 2D plane. To
measure the size of the event A, we integrate fX,Y (x, y) inside A.

Example 5.5. Consider a uniform joint PDF fX,Y (x, y) defined on [0, 2]2 with fX,Y (x, y) =
1
4 . Let A = [a, b]× [c, d]. Find P[A].

Solution.

P[A] = P[a ≤ X ≤ b, c ≤ X ≤ d]

=

∫ d

c

∫ b

a

fX,Y (x, y) dx dy =

∫ d

c

∫ b

a

1

4
dx dy =

(d− c)(b− a)

4
.

Practice Exercise 5.1. In the previous example, let B = {X + Y ≤ 2}. Find P[B].

Solution.

P[B] =
∫
B
fX,Y (x, y) dx dy =

∫ 2

0

∫ 2−y

0

fX,Y (x, y) dx dy

=

∫ 2

0

∫ 2−y

0

1

4
dx dy =

∫ 2

0

2− y

4
dy =

1

2
.

Here, the limits of the integration can be determined from Figure 5.6. The inner
integration (with respect to x) should start from 0 and end at 2− y, which is the line
defining the set x + y ≤ 2. Since the inner integration is performed for every y, we
need to enumerate all the possible y’s to complete the outer integration. This leads to
the outer limit from 0 to 2.

5.1.4 Normalization

The normalization property of a two-dimensional PMF and PDF is the property that, when
we enumerate all outcomes of the sample space, we obtain 1.
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Figure 5.6: To calculate P[X + Y ≤ 2], we perform a 2D integration over a triangle.

Theorem 5.1. Let Ω = ΩX × ΩY . All joint PMFs and joint PDFs satisfy∑
(x,y)∈Ω

pX,Y (x, y) = 1 or

∫
Ω

fX,Y (x, y) dx dy = 1. (5.3)

Example 5.6. Consider a joint uniform PDF defined in the shaded area [0, 3]× [0, 3]
with PDF defined below. Find the constant c.

fX,Y (x, y) =

{
c if (x, y) ∈ [0, 3]× [0, 3],

0 otherwise.

Solution. To find the constant c, we note that

1 =

∫ 3

0

∫ 3

0

fX,Y (x, y) dx dy =

∫ 3

0

∫ 3

0

c dx dy = 9c.

Equating the two sides gives us c = 1
9 .

Practice Exercise 5.2. Consider a joint PDF

fX,Y (x, y) =

{
ce−xe−y 0 ≤ y ≤ x <∞,

0 otherwise.

Find the constant c. Tip: Consider the area of integration as shown in Figure 5.7.

Solution. There are two ways to take the integration shown in Figure 5.7. We choose
the inner integration w.r.t. y first.∫

Ω

fX,Y (x, y) dx dy =

∫ ∞
0

∫ x

0

ce−xe−y dy dx =

∫ ∞
0

ce−x(1− e−x) =
c

2
.

Therefore, c = 2.
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Figure 5.7: To integrate the probability P[0 ≤ Y ≤ X], we perform a 2D integration over a triangle.
The two subfigures show the two ways of integrating the triangle. [Left]

∫
dx first, and then

∫
dy.

[Right]
∫

dy first, and then
∫

dx.

5.1.5 Marginal PMF and marginal PDF

If we only sum / integrate for one random variable, we obtain the PMF / PDF of the other
random variable. The resulting PMF / PDF is called the marginal PMF / PDF.

Definition 5.3. The marginal PMF is defined as

pX(x) =
∑
y∈ΩY

pX,Y (x, y) and pY (y) =
∑

x∈ΩX

pX,Y (x, y), (5.4)

and the marginal PDF is defined as

fX(x) =

∫
ΩY

fX,Y (x, y) dy and fY (y) =

∫
ΩX

fX,Y (x, y) dx. (5.5)

Since fX,Y (x, y) is a two-dimensional function, when integrating over y from −∞ to ∞, we
project fX,Y (x, y) onto the x-axis. Therefore, the resulting function depends on x only.

Example 5.7. Consider the joint PDF fX,Y (x, y) =
1
4 shown below. Find the marginal

PDFs.
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Solution. If we integrate over x and y, we have

fX(x) =


3, if 1 < x ≤ 2,

1, if 2 < x ≤ 3,

0, otherwise.

and fY (y) =


1, if 1 < x ≤ 2,

2, if 2 < x ≤ 3,

1, if 3 < x ≤ 4,

0, otherwise.

So the marginal PDFs are the projection of the joint PDFs onto the x- and y-axes.

Practice Exercise 5.3. A joint Gaussian random variable (X,Y ) has a joint PDF
given by

fX,Y (x, y) =
1

2πσ2
exp

{
− ((x− µX)2 + (y − µY )

2)

2σ2

}
.

Find the marginal PDFs fX(x) and fY (y).

Solution.

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

=

∫ ∞
−∞

1

2πσ2
exp

{
− ((x− µX)2 + (y − µY )

2)

2σ2

}
dy

=
1√
2πσ2

exp

{
− (x− µX)2

2σ2

}
·
∫ ∞
−∞

1√
2πσ2

exp

{
− (y − µY )

2

2σ2

}
dy.

Recognizing that the last integral is equal to unity because it integrates a Gaussian
PDF over the real line, it follows that

fX(x) =
1√
2πσ2

exp

{
− (x− µX)2

2σ2

}
.

Similarly, we have

fY (y) =
1√
2πσ2

exp

{
− (y − µY )

2

2σ2

}
.

5.1.6 Independent random variables

Two random variables are said to be independent if and only if the joint PMF or PDF can
be factorized as a product of the marginal PMF / PDFs.

Definition 5.4. Random variables X and Y are independent if and only if

pX,Y (x, y) = pX(x) pY (y), or fX,Y (x, y) = fX(x) fY (y).

This definition is consistent with the definition of independence of two events. Recall that
two events A and B are independent if and only if P[A∩B] = P[A]P[B]. Letting A = {X = x}
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and B = {Y = y}, we see that if A and B are independent then P[X = x ∩ Y = y] is the
product P[X = x]P[Y = y]. This is precisely the relationship pX,Y (x, y) = pX(x) pY (y).

Example 5.8. Consider two random variables with a joint PDF given by

fX,Y (x, y) =
1

2πσ2
exp

{
− (x− µX)2 + (y − µY )

2

2σ2

}
.

Are X and Y independent?

Solution. We know that

fX,Y (x, y) =
1√
2πσ

exp

{
− (x− µX)2

2σ2

}
︸ ︷︷ ︸

fX(x)

× 1√
2πσ

exp

{
− (y − µY )

2

2σ2

}
︸ ︷︷ ︸

fY (y)

.

Therefore, the random variables X and Y are independent.

Practice Exercise 5.4. Let X be a coin and Y be a die. Then the joint PMF is given
by the table below.

Y
1 2 3 4 5 6

X = 0 1
12

1
12

1
12

1
12

1
12

1
12

X = 1 1
12

1
12

1
12

1
12

1
12

1
12

Are X and Y independent?

Solution. For any x and y, we have that

pX,Y (x, y) =
1

12
=

1

2︸︷︷︸
pX(x)

× 1

6︸︷︷︸
pY (y)

.

Therefore, the random variables X and Y are independent.

Example 5.9. Consider two random variables X and Y with a joint PDF given bya

fX,Y (x, y) ∝ exp
{
−(x− y)2

}
= exp

{
−x2 + 2xy − y2

}
= exp

{
−x2

}︸ ︷︷ ︸
fX(x)

exp {2xy}︸ ︷︷ ︸
extra term

exp
{
−y2

}︸ ︷︷ ︸
fY (y)

.

This PDF cannot be factorized into a product of two marginal PDFs. Therefore, the
random variables are dependent.

aWe use the notation “∝” to denote “proportional to”. It implies that the normalization constant
is omitted.
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We can extrapolate the definition of independence to multiple random variables. If
there are many random variables X1, X2, . . . , XN , they will have a joint PDF

fX1,...,XN
(x1, . . . , xN ).

If these random variables X1, X2, . . . , XN are independent, then the joint PDF can be
factorized as

fX1,...,XN
(x1, . . . , xN ) = fX1(x1) · fX2(x2) · · · fXN

(xN )

=

N∏
n=1

fXn
(xn).

This gives us the definition of independence for N random variables.

Definition 5.5. A sequence of random variables X1, . . . , XN is independent if and
only if their joint PDF (or joint PMF) can be factorized.

fX1,...,XN
(x1, . . . , xN ) =

N∏
n=1

fXn(xn). (5.6)

Example 5.10. Throw a die 4 times. Let X1, X2, X3 and X4 be the outcomes. Then,
since these four throws are independent, the probability mass function of any quadrable
(x1, x2, x3, x4) is

pX1,X2,X3,X4
(x1, x2, x3, x4) = pX1

(x1) pX2
(x2) pX3

(x3) pX4
(x4).

For example, the probability of getting (1, 5, 2, 6) is

pX1,X2,X3,X4
(1, 5, 2, 6) = pX1

(1) pX2
(5) pX3

(2) pX4
(6) =

(
1

6

)4

.

The example above demonstrates an interesting phenomenon. If the N random vari-
ables are independent, and if they all have the same distribution, then the joint PDF/PMF
is just one of the individual PDFs taken to the power N . Random variables satisfying this
property are known as independent and identically distributed random variables.

Definition 5.6 (Independent and Identically Distributed (i.i.d.)). A collection of
random variables X1, . . . , XN is called independent and identically distributed (i.i.d.)
if

� All X1, . . . , XN are independent; and

� All X1, . . . , XN have the same distribution, i.e., fX1
(x) = · · · = fXN

(x).

If X1, . . . , XN are i.i.d., we have that

fX1,...,XN
(x1, . . . , x1) =

N∏
n=1

fX1
(xn),
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where the particular choice of X1 is unimportant because fX1(x) = · · · = fXN
(x).

Why is i.i.d. so important?

� If a set of random variables are i.i.d., then the joint PDF can be written as a
product of PDFs.

� Integrating a joint PDF is difficult. Integrating a product of PDFs is much easier.

Example 5.11. Let X1, X2, . . . , XN be a sequence of i.i.d. Gaussian random variables
where each Xi has a PDF

fXi
(x) =

1√
2π

exp

{
−x2

2

}
.

The joint PDF of X1, X2, . . . , XN is

fX1,...,XN
(x1, . . . , xN ) =

N∏
i=1

{
1√
2π

exp

{
−x2

i

2

}}

=

(
1√
2π

)N

exp

{
−

N∑
i=1

x2
i

2

}
,

which is a function depending not on the individual values of x1, x2, . . . , xN but on the
sum

∑N
i=1 x

2
i . So we have “compressed” an N -dimensional function into a 1D function.

Example 5.12. Let θ be a deterministic number that was sent through a noisy channel.
We model the noise as an additive Gaussian random variable with mean 0 and variance
σ2. Supposing we have observed measurements Xi = θ +Wi, for i = 1, . . . , N , where
Wi ∼ Gaussian(0, σ2), then the PDF of each Xi is

fXi
(x) =

1√
2πσ2

exp

{
− (x− θ)2

2σ2

}
.

Thus the joint PDF of (X1, X2, . . . , XN ) is

fX1,...,XN
(x1, . . . , xN ) =

N∏
i=1

{
1√
2πσ2

exp

{
− (xi − θ)2

2σ2

}}

=

(
1√
2πσ2

)N

exp

{
−

N∑
i=1

(xi − θ)2

2σ2

}
.

Essentially, this joint PDF tells us the probability density of seeing sample data
x1, . . . , xN .
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5.1.7 Joint CDF

We now introduce the cumulative distribution function (CDF) for multiple variables.

Definition 5.7. Let X and Y be two random variables. The joint CDF of X and Y
is the function FX,Y (x, y) such that

FX,Y (x, y) = P[X ≤ x ∩ Y ≤ y]. (5.7)

This definition can be more explicitly written as follows.

Definition 5.8. If X and Y are discrete, then

FX,Y (x, y) =
∑
y′≤y

∑
x′≤x

pX,Y (x
′, y′). (5.8)

If X and Y are continuous, then

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (x

′, y′) dx′ dy′. (5.9)

If the two random variables are independent, then we have

FX,Y (x, y) =

∫ x

−∞
fX(x′) dx′

∫ y

−∞
fY (y

′) dy′ = FX(x)FY (y).

Example 5.13. Let X and Y be two independent uniform random variables
Uniform(0, 1). Find the joint CDF.

Solution.

FX,Y (x, y) = FX(x)FY (y) =

∫ x

0

fX(x′) dx′
∫ y

0

fY (y
′) dy′

=

∫ x

0

1 dx′
∫ y

0

1 dy′ = xy.

Practice Exercise 5.5. Let X and Y be two independent uniform random variables
Gaussian(µ, σ2). Find the joint CDF.

Solution. Let Φ(·) be the CDF of the standard Gaussian.

FX,Y (x, y) = FX(x)FY (y)

=

∫ x

−∞
fX(x′) dx′

∫ y

−∞
fY (y

′) dy′ = Φ

(
x− µ

σ

)
Φ

(
y − µ

σ

)
.
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Here are a few properties of the CDF:

FX,Y (x,−∞) =

∫ −∞
−∞

∫ x

−∞
fX,Y (x

′, y′) dx′ dy′ =

∫ x

−∞
0 dx′ = 0,

FX,Y (−∞, y) =

∫ y

−∞

∫ −∞
−∞

fX,Y (x
′, y′) dx′ dy′ =

∫ y

−∞
0 dy′ = 0,

FX,Y (−∞,−∞) =

∫ −∞
−∞

∫ −∞
−∞

fX,Y (x
′, y′) dx′ dy′ = 0,

FX,Y (∞,∞) =

∫ ∞
−∞

∫ ∞
−∞

fX,Y (x
′, y′) dx′ dy′ = 1.

In addition, we can obtain the marginal CDF as follows.

Proposition 5.1. Let X and Y be two random variables. The marginal CDF is

FX(x) = FX,Y (x,∞), (5.10)

FY (y) = FX,Y (∞, y). (5.11)

Proof. We prove only the first case. The second case is similar.

FX,Y (x,∞) =

∫ x

−∞

∫ ∞
−∞

fX,Y (x
′, y′) dy′ dx′ =

∫ y

−∞
fX(x′) dx′ = FX(x). □

By the fundamental theorem of calculus, we can derive the PDF from the CDF.

Definition 5.9. Let FX,Y (x, y) be the joint CDF of X and Y . Then, the joint PDF
is

fX,Y (x, y) =
∂2

∂y ∂x
FX,Y (x, y). (5.12)

The order of the partial derivatives can be switched, yielding a symmetric result:

fX,Y (x, y) =
∂2

∂x ∂y
FX,Y (x, y).

Example 5.14. Let X and Y be two uniform random variables with joint CDF
FX,Y (x, y) = xy for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Find the joint PDF.

Solution.

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y) =

∂2

∂x∂y
xy = 1,

which is consistent with the definition of a joint uniform random variable.
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Practice Exercise 5.6. Let X and Y be two exponential random variables with joint
CDF

FX,Y (x, y) = (1− e−λx)(1− e−λy), x ≥ 0, y ≥ 0.

Find the joint PDF.

Solution.

fX,Y (x, y) =
∂2

∂x∂y
FX,Y (x, y) =

∂2

∂x∂y
(1− e−λx)(1− e−λy)

=
∂

∂x

(
(1− e−λx)(λe−λy)

)
= λe−λxλe−λy.

which is consistent with the definition of a joint exponential random variable.

5.2 Joint Expectation

5.2.1 Definition and interpretation

When we have a single random variable, the expectation is defined as

E[X] =

∫
Ω

xfX(x) dx.

For a pair of random variables, what would be a good way of defining the expectation?
Certainly, we cannot just replace fX(x) by fX,Y (x, y) because the integration has to be-
come a double integration. However, if it is a double integration, where should we put the
variable y? It turns out that a useful way of defining the expectation for X and Y is as
follows.

Definition 5.10. Let X and Y be two random variables. The joint expectation is

E[XY ] =
∑
y∈ΩY

∑
x∈ΩX

xy · pX,Y (x, y) (5.13)

if X and Y are discrete, or

E[XY ] =

∫
y∈ΩY

∫
x∈ΩX

xy · fX,Y (x, y) dx dy (5.14)

if X and Y are continuous. Joint expectation is also called correlation.

The double summation and integration on the right-hand side of the equation is nothing
but the state times the probability. Here, the state is the product xy, and the probability is
the joint PMF pX,Y (x, y) (or PDF). Therefore, as long as you agree that joint expectation
should be defined as E[XY ], the double summation and the double integration make sense.
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The biggest mystery here is E[XY ]. You may wonder why the joint expectation should
be defined as the expectation of the product E[XY ]. Why not the sum E[X + Y ], or the
difference E[X−Y ], or the quotient E[X/Y ]? Why are we so deeply interested in X times Y ?
These are excellent questions. That the joint expectation is defined as the product has to do
with the correlation between two random variables. We will take a small detour into linear
algebra.

Let us consider two discrete random variables X and Y , both with N states. So X
will take the states {x1, x2, . . . , xN} and Y will take the states {y1, y2, . . . , yN}. Let’s define
them as two vectors: x

def
= [x1, . . . , xN ]T and y

def
= [y1, . . . , yN ]T . Since X and Y are random

variables, they have a joint PMF pX,Y (x, y). The array of the PMF values can be written
as a matrix:

PMF as a matrix = P
def
=


pX,Y (x1, y1) pX,Y (x1, y2) · · · pX,Y (x1, yN )
pX,Y (x2, y1) pX,Y (x2, y2) · · · pX,Y (x2, yN )

...
...

. . .
...

pX,Y (xN , y1) pX,Y (xN , y2) · · · pX,Y (xN , yN )

 .

Let’s try to write the joint expectation in terms of matrices and vectors. The definition
of a joint expectation tells us that

E[XY ] =

N∑
i=1

N∑
j=1

xiyj · pX,Y (xi, yj),

which can be written as

E[XY ] =
[
x1 · · · xN

]︸ ︷︷ ︸
xT

 pX,Y (x1, y1) · · · pX,Y (x1, yN )
...

. . .
...

pX,Y (xN , y1) · · · pX,Y (xN , yN )


︸ ︷︷ ︸

P

 y1...
yN


︸ ︷︷ ︸

y

= xTPy.

This is a weighted inner product between x and y using the weight matrix P .

Why correlation is defined as E[XY ]

� E[XY ] is a weighted inner product between the states:

E[XY ] = xTPy.

� x and y are the states of the random variables X and Y .

� The inner product measures the similarity between two vectors.

Example 5.15. Let X be a discrete random variable with N states, where each state
has an equal probability. Thus, pX(x) = 1/N for all x. Let Y = X be another variable.
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Then the joint PMF of (X,Y ) is

pX,Y (x, y) =

{
1
N , x = y,

0, x ̸= y.

It follows that the joint expectation is

E[XY ] =

N∑
i=1

N∑
j=1

xiyj · pX,Y (xi, yj) =
1

N

N∑
i=1

xiyi.

Equivalently, we can obtain the result via the inner product by defining

P =


1
N 0 · · · 0
0 1

N · · · 0
...

...
. . .

...
0 · · · · · · 1

N

 =
1

N
I.

In this case, the weighted inner product is

xTPy =
xTy

N
=

1

N

N∑
i=1

xiyi = E[XY ].

How do we understand the inner product? Ignoring the matrix P for a moment, we
recall an elementary result in linear algebra.

Definition 5.11. Let x ∈ RN and y ∈ RN be two vectors. Define the cosine angle
cos θ as

cos θ =
xTy

∥x∥∥y∥
, (5.15)

where ∥x∥ =
√∑N

i=1 x
2
i is the norm of the vector x, and ∥y∥ =

√∑N
i=1 y

2
i is the

norm of the vector y.

This definition can be understood as the geometry between two vectors, as illustrated in
Figure 5.8. If the two vectors x and y are parallel so that x = αy for some α, then the
angle θ = 0. If x and y are orthogonal so that xTy = 0, then θ = π/2. Therefore, the inner
product xTy tells us the degree of correlation between the vectors x and y.

Now let’s come back to our discussion about the joint expectation. The cosine angle
definition tells us that if E[XY ] = xTPy, the following form would make sense:

cos θ =
xTPy

∥x∥∥y∥
=

E[XY ]

∥x∥∥y∥
.

That is, as long as we can find out the norms ∥x∥ and ∥y∥, we will be able to interpret
E[XY ] from the cosine angle perspective. But what would be a reasonable definition of ∥x∥
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Figure 5.8: The geometry of joint expectation. E[XY ] gives us the cosine angle between the two random
variables. This, in turn, tells us the correlation between the two random variables.

and ∥y∥? We define the norm by first considering the variance of the random variable X
and Y :

E[X2] =

N∑
i=1

xixi · pX(xi)

=
[
x1 · · · xN

]︸ ︷︷ ︸
xT

pX(x1) · · · 0
...

. . .
...

0 · · · pX(xN )


︸ ︷︷ ︸

PX

x1

...
xN


︸ ︷︷ ︸

x

= xTPXx = ∥x∥2PX
,

where PX is the diagonal matrix storing the probability masses of the random variable X.
It is not difficult to show that PX = diag(P1) by following the definition of the marginal
distributions (which are the column and row sums of the joint PMF). Similarly we can define

E[Y 2] =

N∑
j=1

yjyj · pY (yj)

=
[
y1 · · · yN

]︸ ︷︷ ︸
yT

pY (y1) · · · 0
...

. . .
...

0 · · · pY (yN )


︸ ︷︷ ︸

P Y

 y1...
yN


︸ ︷︷ ︸

y

= yTP Y y = ∥y∥2P Y
.

Therefore, one way to define the cosine angle is to start with

cos θ =
xTPXY y

∥x∥PX
∥y∥P Y

,

where PXY = P , ∥x∥PX
=
√
xTPXx and ∥y∥P Y

=
√
yTP Y y. But writing it in terms of

the expectation, we observe that this cosine angle is exactly

cos θ =
xTPXY y

∥x∥PX
∥y∥P Y

=
E[XY ]√

E[X2]
√
E[Y 2]

.
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Therefore, E[XY ] defines the cosine angle between the two random variables, which, in turn,
defines the correlation between the two. A large |E[XY ]| means that X and Y are highly
correlated, and a small |E[XY ]| means that X and Y are not very correlated. If E[XY ] = 0,
then the two random variables are uncorrelated. Therefore, E[XY ] tells us how the two
random variables are related to each other.

To further convince you that E[XY ]√
E[X2]

√
E[Y 2]

can be interpreted as a cosine angle, we

show that

−1 ≤ E[XY ]√
E[X2]

√
E[Y 2]

≤ 1,

because if this ratio can go beyond +1 and −1, it makes no sense to call it a cosine angle.
The argument follows from a very well-known inequality in probability, called the Cauchy-

Schwarz inequality (for expectation), which states that −1 ≤ E[XY ]√
E[X2]

√
E[Y 2]

≤ 1:

Theorem 5.2 (Cauchy-Schwarz inequality). For any random variables X and Y ,

(E[XY ])2 ≤ E[X2]E[Y 2]. (5.16)

The following proof can be skipped if you are reading the book the first time.

Proof. Let t ∈ R be a constant. Consider E[(X + tY )2] = E[X2 + 2tXY + t2Y 2]. Since
E[(X + tY )2] ≥ 0 for any t, it follows that

E[X2 + 2tXY + t2Y 2] ≥ 0.

Expanding the left-hand side yields t2E[Y 2] + 2tE[XY ] + E[X2] ≥ 0. This is a quadratic
equation in t, and we know that for any quadratic equation at2 + bt+ c ≥ 0 we must have
b2 − 4ac ≤ 0. Therefore, in our case, we have that

(2E[XY ])2 − 4E[Y 2]E[X2] ≤ 0,

which means (E[XY ])2 ≤ E[X2]E[Y 2]. The equality holds when E[(X + tY )2] = 0. In this
case, X = −tY for some t, i.e., the random variable X is a scaled version of Y so that the
vector formed by the states of X is parallel to that of Y .

□

End of the proof.

5.2.2 Covariance and correlation coefficient

In many practical problems, we prefer to work with central moments, i.e., E[(X −µX)2] in-
stead of E[X2]. This essentially means that we subtract the mean from the random variable.
If we adopt such a centralized random variable, we can define the covariance as follows.
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Definition 5.12. Let X and Y be two random variables. Then the covariance of X
and Y is

Cov(X,Y ) = E[(X − µX)(Y − µY )], (5.17)

where µX = E[X] and µY = E[Y ].

It is easy to show that if X = Y , then the covariance simplifies to the variance:

Cov(X,X) = E[(X − µX)(X − µX)]

= Var[X].

Thus, covariance is a generalization of variance. The former can handle a pair of variables,
whereas the latter is only for a single variable. We can also demonstrate the following result.

Theorem 5.3. Let X and Y be two random variables. Then

Cov(X,Y ) = E[XY ]− E[X]E[Y ] (5.18)

Proof. Just apply the definition of covariance:

Cov(X,Y ) = E[(X − µX)(Y − µY )]

= E[XY −XµY − Y µX + µXµY ]

= E[XY ]− µXµY .

□
The next theorem concerns the sum of two random variables.

Theorem 5.4. For any X and Y ,

a. E[X + Y ] = E[X] + E[Y ].

b. Var[X + Y ] = Var[X] + 2Cov(X,Y ) + Var[Y ].

Proof. Recall the definition of joint expectation:

E[X + Y ] =
∑
y

∑
x

(x+ y)pX,Y (x, y)

=
∑
y

∑
x

xpX,Y (x, y) +
∑
y

∑
x

ypX,Y (x, y)

=
∑
x

x

(∑
y

pX,Y (x, y)

)
+
∑
y

y

(∑
x

pX,Y (x, y)

)
=
∑
x

xpX(x) +
∑
y

ypY (y)

= E[X] + E[Y ].
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Similarly,

Var[X + Y ] = E[(X + Y )2]− E[X + Y ]2

= E[(X + Y )2]− (µX + µY )
2

= E[X2 + 2XY + Y 2]− (µ2
X + 2µXµY + µ2

Y )

= E[X2]− µ2
X + E[Y 2]− µ2

Y + 2(E[XY ]− µXµY )

= Var[X] + 2Cov(X,Y ) + Var[Y ].

□
With covariance defined, we can now define the correlation coefficient ρ, which is the

cosine angle of the centralized variables. That is,

ρ = cos θ

=
E[(X − µX)(Y − µY )]√

E[(X − µX)2]E[(Y − µY )2]
.

Recognizing that the denominator of this expression is just the variance of X and Y , we
define the correlation coefficient as follows.

Definition 5.13. Let X and Y be two random variables. The correlation coefficient
is

ρ =
Cov(X,Y )√
Var[X]Var[Y ]

. (5.19)

Since −1 ≤ cos θ ≤ 1, ρ is also between −1 and 1. The difference between ρ and E[XY ]
is that ρ is normalized with respect to the variance of X and Y , whereas E[XY ] is not
normalized. The correlation coefficient has the following properties:

� ρ is always between −1 and 1, i.e., −1 ≤ ρ ≤ 1. This is due to the cosine angle
definition.

� When X = Y (fully correlated), ρ = +1.

� When X = −Y (negatively correlated), ρ = −1.
� When X and Y are uncorrelated, ρ = 0.

5.2.3 Independence and correlation

If two random variables X and Y are independent, the joint expectation can be written as
a product of two individual expectations.

Theorem 5.5. If X and Y are independent, then

E[XY ] = E[X]E[Y ]. (5.20)
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Proof. We only prove the discrete case because the continuous can be proved similarly. If
X and Y are independent, we have pX,Y (x, y) = pX(x) pY (y). Therefore,

E[XY ] =
∑
y

∑
x

xypX,Y (x, y) =
∑
y

∑
x

xypX(x)pY (y)

=

(∑
x

xpX(x)

)(∑
y

ypY (y)

)
= E[X]E[Y ].

□
In general, for any two independent random variables and two functions f and g,

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

The following theorem illustrates a few important relationships between independence
and correlation.

Theorem 5.6. Consider the following two statements:

a. X and Y are independent;

b. Cov(X,Y ) = 0.

Statement (a) implies statement (b), but (b) does not imply (a). Thus, independence
is a stronger condition than correlation.

Proof. We first prove that (a) implies (b). If X and Y are independent, then E[XY ] =
E[X]E[Y ]. In this case,

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = E[X]E[Y ]− E[X]E[Y ] = 0.

To prove that (b) does not imply (a), we show a counterexample. Consider a discrete
random variable Z with PMF

pZ(z) =
[
1
4

1
4

1
4

1
4

]
.

Let X and Y be
X = cos

π

2
Z and Y = sin

π

2
Z.

Then we can show that E[X] = 0 and E[Y ] = 0. The covariance is

Cov(X,Y ) = E[(X − 0)(Y − 0)]

= E
[
cos

π

2
Z sin

π

2
Z
]

= E
[
1

2
sinπZ

]
=

1

2

[
(sinπ0)

1

4
+ (sinπ1)

1

4
+ (sinπ2)

1

4
+ (sinπ3)

1

4

]
= 0.
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The next step is to show that X and Y are dependent. To this end, we only need to show
that pX,Y (x, y) ̸= pX(x)pY (y). The joint PMF pX,Y (x, y) can be found by noting that

Z = 0⇒ X = 1, Y = 0,

Z = 1⇒ X = 0, Y = 1,

Z = 2⇒ X = −1, Y = 0,

Z = 3⇒ X = 0, Y = −1.

Thus, the PMF is

pX,Y (x, y) =

0 1
4 0

1
4 0 1

4
0 1

4 0

 .

The marginal PMFs are

pX(x) =
[
1
4

1
2

1
4

]
, pY (y) =

[
1
4

1
2

1
4

]
.

The product pX(x) pY (y) is

pX(x)pY (y) =


1
16

1
8

1
16

1
8

1
4

1
8

1
16

1
8

1
16

 .

Therefore, pX,Y (x, y) ̸= pX(x)pY (y), although E[XY ] = E[X]E[Y ].
□

What is the relationship between independent and uncorrelated?

� Independent ⇒ uncorrelated.

� Independent ⇍ uncorrelated.

5.2.4 Computing correlation from data

We close this section by discussing a very practical problem: Given a dataset containing two
columns of data points, how do we determine whether the two columns are correlated?

Recall that the correlation coefficient is defined as

ρ =
E[XY ]− µXµY

σXσY
.

If we have a dataset containing (xn, yi)
N
n=1, then the correlation coefficient can be approxi-

mated by

ρ̂ =
1
N

∑N
n=1 xnyn − x y√

1
N

∑N
n=1(xn − x)2

√
1
N

∑N
n=1(yn − y)2

,

where x = 1
N

∑N
n=1 xn and y = 1

N

∑N
n=1 yn are the means. This equation should not be a

surprise because essentially all terms are the empirical estimates. Thus, ρ̂ is the empirical
correlation coefficient determined from the dataset. As N →∞, we expect ρ̂→ ρ.
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(a) ρ̂ = −0.0038 (b) ρ̂ = 0.5321 (c) ρ̂ = 0.9656

Figure 5.9: Visualization of correlated variables. Each of these figures represent a scattered plot of a
dataset containing (xn, yn)

N
n=1. (a) is uncorrelated. (b) is somewhat correlated. (c) is strongly correlated.

Figure 5.9 shows three example datasets. We plot the (xn, yn) pairs as coordinates in
the 2D plane. The first dataset contains samples that are almost uncorrelated. We can see
that xn does not tell us anything about yn. The second dataset is moderately correlated.
The third dataset is highly correlated: If we know xn, we are almost certain to know the
corresponding yn, with a small number of perturbations.

On a computer, computing the correlation coefficient can be done using built-in com-
mands such as corrcoef in MATLAB and stats.pearsonr in Python. The codes to gen-
erate the results in Figure 5.9(b) are shown below.

% MATLAB code to compute the correlation coefficient

x = mvnrnd([0,0],[3 1; 1 1],1000);

figure(1); scatter(x(:,1),x(:,2));

rho = corrcoef(x)

# Python code to compute the correlation coefficient

import numpy as np

import scipy.stats as stats

import matplotlib.pyplot as plt

x = stats.multivariate_normal.rvs([0,0], [[3,1],[1,1]], 10000)

plt.figure(); plt.scatter(x[:,0],x[:,1])

rho,_ = stats.pearsonr(x[:,0],x[:,1])

print(rho)

5.3 Conditional PMF and PDF

Whenever we have a pair of random variables X and Y that are correlated, we can define
their conditional distributions, which quantify the probability of X = x given Y = y. In
this section, we discuss the concepts of conditional PMF and PDF.
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5.3.1 Conditional PMF

We start by defining the conditional PMF for a pair of discrete random variables.

Definition 5.14. Let X and Y be two discrete random variables. The conditional
PMF of X given Y is

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
. (5.21)

The simplest way to understand this is to view pX|Y (x|y) as P[X = x |Y = y]. That is,
given that Y = y, what is the probability for X = x? To see why this perspective makes
sense, let us recall the definition of a conditional probability:

pX|Y (x|y) =
pX,Y (x, y)

pY (y)

=
P[X = x ∩ Y = y]

P[Y = y]
= P[X = x |Y = y].

As we can see, the last two equalities are essentially the definitions of conditional probability
and the joint PMF.

How should we understand the notation pX|Y (x|y)? Is it a one-variable function in x or
a two-variable function in (x, y)? What does pX|Y (x|y) tell us? To answer these questions,
let us first try to understand the randomness exhibited in a conditional PMF. In pX|Y (x|y),
the random variable Y is fixed to a specific value Y = y. Therefore there is nothing random
about Y . All the possibilities of Y have already been taken care of by the denominator
pY (y). Only the variable x in pX|Y (x|y) has randomness. What do we mean by “fixed at a
value Y = y”? Consider the following example.

Example 5.16. Suppose there are two coins. Let

X = the sum of the values of two coins,

Y = the value of the first coin.

Clearly, X has 3 states: 0, 1, 2, and Y has two states: either 0 or 1. When we say
pX|Y (x|1), we refer to the probability mass function of X when fixing Y = 1. If we do
not impose this condition, the probability mass of X is simple:

pX(x) =

[
1

4
,
1

2
,
1

4

]
.

However, if we include the conditioning, then

pX|Y (x|1) =
pX,Y (x, 1)

pY (1)

=

[
0, 2

4 ,
1
4

]
1
6

=

[
0,

2

3
,
1

3

]
.
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To put this in plain words, when Y = 1, there is no way for X to take the state 0. The
chance for X to take the state 1 is 2/3 because either (0, 1) or (1, 0) can give X = 1.
The chance for X to take the state 2 is 1/3 because it has to be (1, 1) in order to give
X = 2. Therefore, when we say “conditioned on Y = 1”, we mean that we limit our
observations to cases where Y = 1. Since Y is already fixed at Y = 1, there is nothing
random about Y . The only variable is X. This example is illustrated in Figure 5.10.

Figure 5.10: Suppose X is the sum of two coins with PMF 0.25, 0.5, 0.25. Let Y be the first coin.
When X is unconditioned, the PMF is just [0.25, 0.5, 0.25]. When X is conditioned on Y = 1,
then “X = 0” cannot happen. Therefore, the resulting PMF pX|Y (x|1) only has two states. After
normalization we obtain the conditional PMF [0, 0.66, 0.33].

Since Y is already fixed at a particular value Y = y, pX|Y (x|y) is a probability mass
function of x (we want to emphasize again that it is x and not y). So pX|Y (x|y) is a one-
variable function in x. It is not the same as the usual PMF pX(x). pX|Y (x|y) is conditioned
on Y = y. For example, pX|Y (x|1) is the PMF of X restricted to the condition that Y = 1.
In fact, it follows that∑

x∈ΩX

pX|Y (x|y) =
∑

x∈ΩX

pX,Y (x, y)

pY (y)
=

∑
x∈ΩX

pX,Y (x, y)

pY (y)
=

pY (y)

pY (y)
= 1,

but this tells us that pX|Y (x|y) is a legitimate probability mass of X. If we sum over the y’s
instead, then we will hit a bump:∑

y∈ΩY

pX|Y (x|y) =
∑
y∈ΩY

pX,Y (x, y)

pY (y)
̸= 1.

Therefore, while pX|Y (x|y) is a legitimate probability mass function of X, it is not a prob-
ability mass function of Y .

Example 5.17. Consider a joint PMF given in the following table. Find the conditional
PMF pX|Y (x|1) and the marginal PMF pX(x).

Y=
1 2 3 4

X = 1 1
20

1
20

1
20

0
20

2 1
20

2
20

3
20

1
20

3 1
20

2
20

3
20

1
20

4 0
20

1
20

1
20

1
20
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Solution. To find the marginal PMF, we sum over all the y’s for every x:

x = 1 : pX(1) =

4∑
y=1

pX,Y (1, y) =
1

20
+

1

20
+

1

20
+

0

20
=

3

20
,

x = 2 : pX(2) =

4∑
y=1

pX,Y (2, y) =
1

20
+

2

20
+

2

20
+

1

20
=

6

20
,

x = 3 : pX(3) =

4∑
y=1

pX,Y (3, y) =
1

20
+

3

20
+

3

20
+

1

20
=

8

20
,

x = 4 : pX(4) =

4∑
y=1

pX,Y (4, y) =
0

20
+

1

20
+

1

20
+

1

20
=

3

20
.

Hence, the marginal PMF is

pX(x) =
[

3
20

6
20

8
20

3
20

]
.

The conditional PMF pX|Y (x|1) is

pX|Y (x|1) =
pX,Y (x, 1)

pY (1)
=

[
1
20

1
20

1
20

0
20

]
3
20

=
[
1
3

1
3

1
3 0

]
.

Practice Exercise 5.7. Consider two random variables X and Y defined as follows.

Y =

{
102, with prob 5/6,

104, with prob 1/6.
X =


10−4Y, with prob 1/2,

10−3Y, with prob 1/3,

10−2Y, with prob 1/6.

Find pX|Y (x|y), pX(x) and pX,Y (x, y).

Solution. Since Y takes two different states, we can enumerate Y = 102 and Y = 104.
This gives us

pX|Y (x|102) =


1/2, if x = 0.01,

1/3, if x = 0.1,

1/6, if x = 1.

pX|Y (x|104) =


1/2, if x = 1,

1/3, if x = 10,

1/6, if x = 100.
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The joint PMF pX,Y (x, y) is

pX,Y (x, 10
2) = pX|Y (x|102)pY (102) =


(
1
2

) (
5
6

)
, x = 0.01,(

1
3

) (
5
6

)
, x = 0.1,(

1
6

) (
5
6

)
, x = 1.

pX,Y (x, 10
4) = pX|Y (x|104)pY (104) =


(
1
2

) (
1
6

)
, x = 1,(

1
3

) (
1
6

)
, x = 10,(

1
6

) (
1
6

)
, x = 100.

Therefore, the joint PMF is given by the following table.

104 0 0 1
12

1
18

1
36

102 5
12

5
18

5
36 0 0

0.01 0.1 1 10 100

The marginal PMF pX(x) is thus

pX(x) =
∑
y

pX,Y (x, y) =
[

5
12

5
18

2
9

1
18

1
36

]
.

In the previous two examples, what is the probability P[X ∈ A |Y = y] or the proba-
bility P[X ∈ A] for some events A? The answers are giving by the following theorem.

Theorem 5.7. Let X and Y be two discrete random variables, and let A be an event.
Then

(i) P[X ∈ A |Y = y] =
∑
x∈A

pX|Y (x|y)

(ii) P[X ∈ A] =
∑
x∈A

∑
y∈ΩY

pX|Y (x|y)pY (y) =
∑
y∈ΩY

P[X ∈ A |Y = y]pY (y).

Proof. The first statement is based on the fact that if A contains a finite number of elements,
then P[X ∈ A] is equivalent to the sum

∑
x∈A P[X = x]. Thus,

P[X ∈ A |Y = y] =
P[X ∈ A ∩ Y = y]

P[Y = y]

=

∑
x∈A P[X = x ∩ Y = y]

P[Y = y]

=
∑
x∈A

pX|Y (x|y).

The second statement holds because the inner summation
∑

y∈ΩY
pX|Y (x|y)pY (y) is just

the marginal PMF pX(x). Thus the outer summation yields the probability.
□
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Example 5.18. Let us follow up on Example 5.17. What is the probability that
P[X > 2|Y = 1]? What is the probability that P[X > 2]?

Solution. Since the problem asks about the conditional probability, we know that it
can be computed by using the conditional PMF. This gives us

P[X > 2|Y = 1] =
∑
x>2

pX|Y (x|1)

=�����pX|Y (1|1) +�����pX|Y (2|1) + pX|Y (3|1)︸ ︷︷ ︸
1
3

+ pX|Y (4|1)︸ ︷︷ ︸
0

=
1

3
.

The other probability is

P[X > 2] =
∑
x>2

pX(x)

=���pX(1) +���pX(2) + pX(3)︸ ︷︷ ︸
8
20

+ pX(4)︸ ︷︷ ︸
3
20

=
11

20
.

What is the rule of thumb for conditional distribution?

� The PMF/PDF should match with the probability you are finding.

� If you want to find the conditional probability P[X ∈ A|Y = y], use the condi-
tional PMF pX|Y (x|y).

� If you want to find the probability P[X ∈ A], use the marginal PMF pX(x).

Finally, we define the conditional CDF for discrete random variables.

Definition 5.15. Let X and Y be discrete random variables. Then the conditional
CDF of X given Y = y is

FX|Y (x|y) = P[X ≤ x |Y = y] =
∑
x′≤x

pX|Y (x
′|y). (5.22)

5.3.2 Conditional PDF

We now discuss the conditioning of a continuous random variable.

Definition 5.16. Let X and Y be two continuous random variables. The conditional
PDF of X given Y is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
. (5.23)
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Example 5.19. Let X and Y be two continuous random variables with a joint PDF

fX,Y (x, y) =

{
2e−xe−y, 0 ≤ y ≤ x <∞,

0, otherwise.

Find the conditional PDFs fX|Y (x|y) and fY |X(y|x).

Solution. We first find the marginal PDFs.

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ x

0

2e−xe−y dy = 2e−x(1− e−x),

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ ∞
y

2e−xe−y dx = 2e−2y.

Thus, the conditional PDFs are

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

=
2e−xe−y

2e−2y
= e−(x+y), x ≥ y,

fY |X(y|x) = fX,Y (x, y)

fX(x)

=
2e−xe−y

2e−x(1− e−x)
=

e−y

1− e−x
, 0 ≤ y < x.

Where does the conditional PDF come from? We cannot duplicate the argument
we used for the discrete case because the denominator of a conditional PMF becomes
P[Y = y] = 0 when Y is continuous. To answer this question, we first define the conditional
CDF for continuous random variables.

Definition 5.17. Let X and Y be continuous random variables. Then the conditional
CDF of X given Y = y is

FX|Y (x|y) =
∫ x

−∞ fX,Y (x
′, y) dx′

fY (y)
. (5.24)

Why should the conditional CDF of continuous random variable be defined in this way? One
way to interpret FX|Y (x|y) is as the limiting perspective. We can define the conditional CDF
as

FX|Y (x|y) = lim
h→0

P(X ≤ x | y ≤ Y ≤ y + h)

= lim
h→0

P(X ≤ x ∩ y ≤ Y ≤ y + h)

P[y ≤ Y ≤ y + h]
.
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With some calculations, we have that

lim
h→0

P(X ≤ x ∩ y ≤ Y ≤ y + h)

P[y ≤ Y ≤ y + h]
= lim

h→0

∫ x

−∞
∫ y+h

y
fX,Y (x

′, y′) dy′ dx′∫ y+h

y
fY (y′) dy′

= lim
h→0

∫ x

−∞ fX,Y (x
′, y′) dx′ · h

fY (y) · h

=

∫ x

−∞ fX,Y (x
′, y′) dx′

fY (y)
.

The key here is that the small step size h in the numerator and the denominator will
cancel each other out. Now, given the conditional CDF, we can verify the definition of the
conditional PDF. It holds that

fX|Y (x|y) =
d

dx
FX|Y (x|y)

=
d

dx

{∫ x

−∞ fX,Y (x
′, y) dx′

fY (y)

}
(a)
=

fX,Y (x, y)

fY (y)
,

where (a) follows from the fundamental theorem of calculus.

Just like the conditional PMF, we can calculate the probabilities using the conditional
PDFs. In particular, if we evaluate the probability where X ∈ A given that Y takes a
particular value Y = y, then we can integrate the conditional PDF fX|Y (x|y), with respect
to x.

Theorem 5.8. Let X and Y be continuous random variables, and let A be an event.

(i) P[X ∈ A | Y = y] =
∫
A
fX|Y (x|y) dx,

(ii) P[X ∈ A] =
∫
ΩY

P[X ∈ A |Y = y]fY (y) dy.

Example 5.20. Let X be a random bit such that

X =

{
+1, with prob 1/2,

−1, with prob 1/2.

Suppose that X is transmitted over a noisy channel so that the observed signal is

Y = X +N,

where N ∼ Gaussian(0, 1) is the noise, which is independent of the signal X. Find the
probabilities P[X = +1 |Y > 0] and P[X = −1 |Y > 0].

Solution. First, we know that

fY |X(y|+ 1) =
1√
2π

e−
(y−1)2

2 and fY |X(y| − 1) =
1√
2π

e−
(y+1)2

2 .

273



CHAPTER 5. JOINT DISTRIBUTIONS

Therefore, integrating y from 0 to ∞ gives us

P[Y > 0 |X = +1] =

∫ ∞
0

1√
2π

e−
(y−1)2

2 dy

= 1−
∫ 0

−∞

1√
2π

e−
(y−1)2

2 dy

= 1− Φ

(
0− 1

1

)
= 1− Φ(−1).

Similarly, we have P[Y > 0 |X = −1] = 1−Φ(+1). The probability we want to find is
P[X = +1 |Y > 0], which can be determined using Bayes’ theorem.

P[X = +1 |Y > 0] =
P[Y > 0 |X = +1]P[X = +1]

P[Y > 0]
.

The denominator can be found by using the law of total probability:

P[Y > 0] = P[Y > 0 |X = +1]P[X = +1]

+ P[Y > 0 |X = −1]P[X = −1]

= 1− 1

2
(Φ(+1) + Φ(−1))

=
1

2
,

since Φ(+1) + Φ(−1) = Φ(+1) + 1− Φ(+1) = 1. Therefore,

P[X = +1 |Y > 0] = 1− Φ(−1)
= 0.8413.

The implication is that if Y > 0, the probability P[X = +1 |Y > 0] = 0.8413. The
complement of this result gives P[X = −1 |Y > 0] = 1− 0.8413 = 0.1587.

Practice Exercise 5.8. Find P[Y > y], where

X ∼ Uniform[1, 2], Y |X ∼ Exponential(x).

Solution. The tricky part of this problem is the tendency to confuse the two variables
X and Y . Once you understand their roles the problem becomes easy. First notice that
Y |X ∼ Exponential(x) is a conditional distribution. It says that given X = x, the
probability distribution of Y is exponential, with the parameter x. Thus, we have that

fY |X(y|x) = xe−xy.

Why? Recall that if Y ∼ Exponential(λ) then fY (y) = λe−λy. Now if we replace λ
with x, we have xe−xy. So the role of x in this conditional density function is as a
parameter.
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conditional probability, 81

Bayes’ theorem, 89
definition, 81
independence, 85
properties, 84
ratio, 81

confidence interval, 541
bootstrapping, 559
critical value, 552
definition, 546
distribution of estimator, 544
estimator, 543
examples, 547
how to construct, 548
interpretation, 545
margin of error, 552
MATLAB and Python, 550
number of samples, 553
properties, 551
standard error, 551
Student’s t-distribution, 554

conjugate prior, 513
convergence in distribution, 367
convergence in probability, 356
convex function, 336
convex optimization

CVXPY, 451
convolution, 220, 639

correlation, 639
filtering, 639

correlation, 633
autocorrelation function, 618
autocovariance function, 618
cross-correlation function, 649
convolution, 639

correlation coefficient
MATLAB and Python, 265
properties, 263
definition, 263

cosine angle, 26
covariance, 261
covariance matrix, 289

independent, 289
cross power spectral density, 651
cross-correlation function

cross-covariance function, 629
definition, 629

examples, 650
through LTI systems, 649

cross-covariance function, 629
cross-correlation function, 629

cumulative distribution function
continuous, 186
discrete, 121
left- and right-continuous, 190
MATLAB and Python, 186
properties, 188

delta function, 178
discrete cosine transform (DCT), 23

eigenvalues and eigenvectors, 295
Gaussian, 296
MATLAB and Python, 296

Erdős-Rényi graph, 140
MATLAB and Python, 480

even functions, 15
event, 61
event space, 61
expectation, 104

continuous, 180
properties, 130, 182
transformation, 182
center of mass, 127
discrete, 125
existence, 130, 183

exponential random variables
definition, 205
MATLAB and Python, 205
origin, 207, 209
properties, 206

exponential series, 12

field, 64
σ-field, 65
Borel σ-field, 65

Fourier transform, 644
table, 330
characteristic function, 330

frequentist, 43
Fundamental Theorem of Calculus, 17

chain rule, 19
proof, 18

Gaussian random variables
CDF, 214
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definition, 211
MATLAB and Python, 212
origin, 220
properties, 212
standard Gaussian, 213

geometric random variable
definition, 149
MATLAB and Python, 150
properties, 151

geometric sequence
finite, 4
infinite, 4

geometric series, 3
finite, 4
infinite, 4

harmonic series, 5
histogram, 2, 113
Hoeffding’s inequality, 348

Hoeffding lemma, 348
proof, 348

hypothesis testing
p-value test, 567, 571
T -test, 574
Z-test, 574
alternative hypothesis, 566
critical level, 569
critical-value test, 567
definition, 566
MATLAB and Python, 568
null hypothesis, 566

impulse response, 643
independence, 85

conditional probability, 88
versus disjoint, 86

independent
random variables, 251

independent and identically distributed (i.i.d.),
253

indicator function, 182
inner product, 24

MATLAB and Python, 24

Jensen’s inequality, 336
proof, 338

joint distribution
definition, 241
joint CDF, 255

joint PDF, 247
joint PMF, 245

joint expectation, 257
cosine angle, 258

kurtosis, 216
MATLAB and Python, 217

Laplace transform, 324
law of large numbers, 323, 351, 381

strong law of large numbers, 360
weak law of large numbers, 354

learning curve, 427
MATLAB and Python, 427

Legendre polynomial, 403
MATLAB and Python, 404

likelihood, 466, 468, 503
log-likelihood, 470

linear algebra
basis vector, 23
representation, 23
span, 22
standard basis vector, 22

linear combination, 21
linear model, 21
linear prediction, 658
linear programming, 414
linear regression

MATLAB and Python, 30
linear time-invariant (LTI)

convolution, 639
definition, 643
system, 643

marginal distribution, 250
Markov’s inequality, 339

proof, 339
tight, 341

matrix calculus, 28
maximum-a-posteriori (MAP), 502

choosing prior, 505
conjugate prior, 513
MAP versus LASSO, 519
MAP versus ML, 504
MAP versus regression, 517
MAP versus ridge, 518
posterior, 503, 511
prior, 503
solution, 506
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maximum-likelihood
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consistent estimator, 494
estimation, 468
estimator, 491
high-dimensional Gaussian, 486
image reconstruction, 481
independent observations, 469
invariance principle, 500
MATLAB and Python, 472
number of training samples, 475
Poisson, 485
regression versus ML, 487
social networks, 478
unbiased estimator, 492
visualization, 471

mean, 199
mean function

LTI system, 644
definition, 618
MATLAB and Python, 621

mean squared error (MSE), 520, 522
measure, 68

almost surely, 73
finite sets, 68
intervals, 68
Lebesgue integration, 71
measure zero sets, 71
definition, 72
examples, 72

regions, 68
size, 69

median, 196
minimum mean-square estimation (MMSE),

520
conditional expectation, 523
Gaussian, 529

minimum-norm least squares, 411
mode, 198
model selection, 165
moment, 133

continuous case, 184
moment-generating function, 322, 324

common distributions, 326
derivative, 325
existence, 331
sum of random variables, 327

multidimensional Gaussian, 290

MATLAB and Python, 291
covariance, 293
transformation, 293
whitening, 299

Neyman-Pearson test, 577
decision rule, 582
likelihood ratio, 584
rejection zone, 578
likelihood ratio test, 578

norm, 24, 26
ℓ1, 27
ℓ∞, 27
MATLAB and Python, 26
weighted, 27

normalization property, 112

odd functions, 15
open and closed intervals, 45
optimal linear filter, 653

deconvolution, 665
denoising, 662
orthogonality condition, 658
Wiener filter, 661
Yule-Walker equation, 656
input function, 654
prediction, 654
target function, 654

orthogonality condition, 658
overdetermined system, 409
overfitting, 418

factors, 420
LASSO, 454
linear analysis, 425
source, 429

parameter estimation, 165, 465
Pascal triangle, 8
Pascal’s identity, 7
performance guarantee

average case, 321
worst case, 321

permutation, 33
Poisson random variable

applications, 154
definition, 152
origin, 157
photon arrivals, 161
Poisson approximation of binomial, 159
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properties, 155
MATLAB and Python, 152

positive semi-definite, 297
posterior, 466, 503
power spectral density, 636

Einstein-Wiener-Khinchin Theorem, 636
through LTI systems, 646
cross power spectral density, 640, 651
eigendecomposition, 639
Fourier transform, 640
origin, 640
wide-sense stationary, 639

PR (precision-recall) curve
definition, 601
MATLAB and Python, 603
precision, 601
recall, 601

principal-component analysis, 303
limitations, 311
main idea, 303
MATLAB and Python, 306

prior, 466, 503
probability, 43, 45

measure of a set, 43
probability axioms, 74

additivity, 75
corollaries, 77
countable additivity, 75
measure, 76
non-negativity, 75
normalization, 75

probability density function, 172
definition, 175
discrete cases, 178
properties, 174
intuition, 172
per unit length, 173

probability inequality, 323, 333
probability law, 66

definition, 66
examples, 66
measure, 67

probability mass function, 104, 110
probability space

(Ω,F ,P), 58

Rademacher random variable, 140
random number generator, 229

random process
discrete time, 653
definition, 612
example
random amplitude, 612
random phase, 613

function, 612
independent, 629
index, 612
sample space, 614
statistical average, 614
temporal average, 614
uncorrelated, 630

random variable, 104, 105
function of, 223
transformation of, 223

random vector, 286
expectation, 288
independent, 286

regression, 391, 394
loss, 394
MATLAB and Python, 400
outliers, 412
prediction model, 394
solution, 397
linear model, 395
outliers, 417
squared error, 396

regularization, 440
LASSO, 449
MATLAB and Python, 442
parameter, 445
ridge, 440
sparse solution, 449

robust linear regression, 412
MATLAB and Python, 416
linear programming, 414

ROC
comparing performance, 597
computation, 592
definition, 589
MATLAB and Python, 593
properties, 591
Receiver operating characteristic, 589

sample average, 320, 351
sample space, 59

continuous outcomes, 59
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counterexamples, 61
discrete outcomes, 59
examples, 59
exclusive, 61
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set, 45
associative, 56
commutative, 56
complement, 52
countable, 45
De Morgan’s Law, 57
difference, 53
disjoint, 54
distributive, 56
empty set, 48
finite, 45
improper subset, 47
infinite, 45
intersection, 50
finite, 50
infinite, 51

of functions, 46
partition, 55
proper subset, 47
subset, 47
uncountable, 45
union, 48
finite, 48
infinite, 49

universal set, 48
simplex method, 414
skewness, 216

MATLAB and Python, 217
statistic, 320
Student’s t-distribution

definition, 554
degrees of freedom, 555
MATLAB and Python, 556
relation to Gaussian, 555

sum of random variables, 280
Bernoulli, 327
binomial, 328
Gaussian, 283, 329
Poisson, 328
common distributions, 282
convolution, 281

symmetric matrices, 296

Taylor approximation, 11
first-order, 11
second-order, 11
exponential, 12
logarithmic, 13

testing error, 420
analysis, 424

testing set, 420
Three Prisoners problem, 92
Toeplitz, 407, 630
training error, 420

analysis, 421
training set, 420
type 1 error

definition, 579
false alarm, 580
false positive, 579
power of test, 581

type 2 error
definition, 579
false negative, 579
miss, 580

underdetermined system, 409
uniform random variables, 202

MATLAB and Python, 203
union bound, 333

validation, 165
variance, 134

properties, 135
continuous case, 184

white noise, 638
wide-sense stationary, 630

jointly, 649
Wiener filter, 661

deconvolution, 665
definition, 661
denoising, 662
MATLAB and Python, 661
power spectral density, 662
recursive filter, 661

Yule-Walker equation, 656
MATLAB and Python, 659
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